NAG Toolbox

nag_lapack_dgebrd (f08ke)

1 Purpose

nag_lapack_dgebrd (f08ke) reduces a real m by n matrix to bidiagonal form.

2 Syntax

```
[a, d, e, tauq, taup, info] = nag_lapack_dgebrd(a, 'm', m, 'n', n)
[a, d, e, tauq, taup, info] = f08ke(a, 'm', m, 'n', n)
```

3 Description

nag_lapack_dgebrd (f08ke) reduces a real m by n matrix A to bidiagonal form B by an orthogonal transformation: $A = QBP^{T}$, where Q and P^{T} are orthogonal matrices of order m and n respectively. If $m \ge n$, the reduction is given by:

$$A = Q \begin{pmatrix} B_1 \\ 0 \end{pmatrix} P^{\mathsf{T}} = Q_1 B_1 P^{\mathsf{T}},$$

where B_1 is an *n* by *n* upper bidiagonal matrix and Q_1 consists of the first *n* columns of *Q*.

If m < n, the reduction is given by

$$A = Q(B_1 \quad 0)P^{\mathrm{T}} = QB_1P_1^{\mathrm{T}},$$

where B_1 is an m by m lower bidiagonal matrix and $P_1^{\rm T}$ consists of the first m rows of $P^{\rm T}$.

The orthogonal matrices Q and P are not formed explicitly but are represented as products of elementary reflectors (see the F08 Chapter Introduction for details). Functions are provided to work with Q and P in this representation (see Section 9).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: $\mathbf{a}(lda,:) - \text{REAL} (\text{KIND=nag_wp}) \text{ array}$

The first dimension of the array **a** must be at least $\max(1, \mathbf{m})$. The second dimension of the array **a** must be at least $\max(1, \mathbf{n})$. The *m* by *n* matrix *A*.

5.2 **Optional Input Parameters**

1: **m** – INTEGER

Default: the first dimension of the array **a**.

m, the number of rows of the matrix A.

Constraint: $\mathbf{m} \ge 0$.

2: **n** – INTEGER

Default: the second dimension of the array \mathbf{a} . *n*, the number of columns of the matrix *A*.

Constraint: $\mathbf{n} \geq 0$.

5.3 Output Parameters

1: $\mathbf{a}(lda,:) - \text{REAL} (\text{KIND=nag_wp}) \text{ array}$

The first dimension of the array \mathbf{a} will be $\max(1, \mathbf{m})$.

The second dimension of the array \mathbf{a} will be $\max(1, \mathbf{n})$.

If $m \ge n$, the diagonal and first superdiagonal store the upper bidiagonal matrix B, elements below the diagonal store details of the orthogonal matrix Q and elements above the first superdiagonal store details of the orthogonal matrix P.

If m < n, the diagonal and first subdiagonal store the lower bidiagonal matrix B, elements below the first subdiagonal store details of the orthogonal matrix Q and elements above the diagonal store details of the orthogonal matrix P.

2: **d**(:) – REAL (KIND=nag_wp) array

The dimension of the array d will be $\max(1,\min(\boldsymbol{m},\boldsymbol{n}))$

The diagonal elements of the bidiagonal matrix B.

3: e(:) - REAL (KIND=nag_wp) array

The dimension of the array \boldsymbol{e} will be $max(1,min(\boldsymbol{m},\boldsymbol{n})-1)$

The off-diagonal elements of the bidiagonal matrix B.

- 4: tauq(:) REAL (KIND=nag_wp) array
 The dimension of the array tauq will be max(1,min(m, n))
 Further details of the orthogonal matrix Q.
- 5: taup(:) REAL (KIND=nag_wp) array
 The dimension of the array taup will be max(1, min(m, n))
 Further details of the orthogonal matrix P.
- 6: **info** INTEGER

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

info = -i

If info = -i, parameter *i* had an illegal value on entry. The parameters are numbered as follows: 1: m, 2: n, 3: a, 4: lda, 5: d, 6: e, 7: tauq, 8: taup, 9: work, 10: lwork, 11: info.

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

7 Accuracy

The computed bidiagonal form B satisfies $QBP^{T} = A + E$, where

$$||E||_2 \le c(n)\epsilon ||A||_2$$

c(n) is a modestly increasing function of n, and ϵ is the *machine precision*.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the computation, but this does not affect the stability of the singular values and vectors.

8 Further Comments

The total number of floating-point operations is approximately $\frac{4}{3}n^2(3m-n)$ if $m \ge n$ or $\frac{4}{3}m^2(3n-m)$ if m < n.

If $m \gg n$, it can be more efficient to first call nag_lapack_dgeqrf (f08ae) to perform a QR factorization of A, and then to call nag_lapack_dgebrd (f08ke) to reduce the factor R to bidiagonal form. This requires approximately $2n^2(m+n)$ floating-point operations.

If $m \ll n$, it can be more efficient to first call nag_lapack_dgelqf (f08ah) to perform an LQ factorization of A, and then to call nag_lapack_dgebrd (f08ke) to reduce the factor L to bidiagonal form. This requires approximately $2m^2(m+n)$ operations.

To form the orthogonal matrices P^{T} and/or Q nag_lapack_dgebrd (f08ke) may be followed by calls to nag_lapack_dorgbr (f08kf):

to form the m by m orthogonal matrix Q

[a, info] = f08kf('Q', k, a, tauq);

but note that the second dimension of the array **a** must be at least **m**, which may be larger than was required by nag_lapack_dgebrd (f08ke);

to form the *n* by *n* orthogonal matrix P^{T}

[a, info] = f08kf('P', k, a, taup);

but note that the first dimension of the array **a**, specified by the argument lda, must be at least **n**, which may be larger than was required by nag_lapack_dgebrd (f08ke).

To apply Q or P to a real rectangular matrix C, nag_lapack_dgebrd (f08ke) may be followed by a call to nag_lapack_dormbr (f08kg).

The complex analogue of this function is nag lapack zgebrd (f08ks).

9 Example

This example reduces the matrix A to bidiagonal form, where

$$A = \begin{pmatrix} -0.57 & -1.28 & -0.39 & 0.25 \\ -1.93 & 1.08 & -0.31 & -2.14 \\ 2.30 & 0.24 & 0.40 & -0.35 \\ -1.93 & 0.64 & -0.66 & 0.08 \\ 0.15 & 0.30 & 0.15 & -2.13 \\ -0.02 & 1.03 & -1.43 & 0.50 \end{pmatrix}$$

9.1 Program Text

function f08ke_example

```
fprintf('f08ke example results\n\n');
```

```
m = 6;
n = nag_int(4);
a = [-0.57 -1.28 -0.39 0.25;
-1.93 1.08 -0.31 -2.14;
```

```
2.30 0.24 0.40 -0.35;
-1.93 0.64 -0.66 0.08;
0.15 0.30 0.15 -2.13;
-0.02 1.03 -1.43 0.50];
% Reduce A to bidiagonal form
[~, d, e, tauq, taup, info] = f08ke(a);
fprintf(' Bidiagonal matrix B\n Main diagonal ');
fprintf(' %7.3f',d);
fprintf(' %7.3f',e);
fprintf('\n');
```

9.2 Program Results

f08ke example results

Bidiagonal matrix B Main diagonal 3.618 2.416 -1.921 -1.427 super-diagonal 1.259 1.526 -1.189