NAG Toolbox

nag_lapack_dgebrd (f08ke)

1 Purpose

nag_lapack_dgebrd (f08ke) reduces a real m by n matrix to bidiagonal form.

2 Syntax

```
[a, d, e, tauq, taup, info] = nag_lapack_dgebrd(a, 'm', m, 'n', n)
[a, d, e, tauq, taup, info] = f08ke(a, 'm', m, 'n', n)
```


3 Description

nag_lapack_dgebrd (f08ke) reduces a real m by n matrix A to bidiagonal form B by an orthogonal transformation: $A=Q B P^{\mathrm{T}}$, where Q and P^{T} are orthogonal matrices of order m and n respectively. If $m \geq n$, the reduction is given by:

$$
A=Q\binom{B_{1}}{0} P^{\mathrm{T}}=Q_{1} B_{1} P^{\mathrm{T}}
$$

where B_{1} is an n by n upper bidiagonal matrix and Q_{1} consists of the first n columns of Q.
If $m<n$, the reduction is given by

$$
A=Q\left(\begin{array}{ll}
B_{1} & 0
\end{array}\right) P^{\mathrm{T}}=Q B_{1} P_{1}^{\mathrm{T}}
$$

where B_{1} is an m by m lower bidiagonal matrix and P_{1}^{T} consists of the first m rows of P^{T}.
The orthogonal matrices Q and P are not formed explicitly but are represented as products of elementary reflectors (see the F08 Chapter Introduction for details). Functions are provided to work with Q and P in this representation (see Section 9).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: $\quad \mathbf{a}(l d a,:)-$ REAL (KIND=nag_wp) array
The first dimension of the array a must be at least $\max (1, \mathbf{m})$.
The second dimension of the array a must be at least $\max (1, \mathbf{n})$.
The m by n matrix A.

5.2 Optional Input Parameters

1: $\quad \mathbf{m}$ - INTEGER
Default: the first dimension of the array a.
m, the number of rows of the matrix A.
Constraint: $\mathbf{m} \geq 0$.

2: $\quad \mathbf{n}$ - INTEGER
Default: the second dimension of the array a.
n, the number of columns of the matrix A.
Constraint: $\mathbf{n} \geq 0$.

5.3 Output Parameters

1: $\quad \mathbf{a}(l d a,:)-$ REAL (KIND=nag_wp) array
The first dimension of the array a will be $\max (1, \mathbf{m})$.
The second dimension of the array a will be $\max (1, \mathbf{n})$.
If $m \geq n$, the diagonal and first superdiagonal store the upper bidiagonal matrix B, elements below the diagonal store details of the orthogonal matrix Q and elements above the first superdiagonal store details of the orthogonal matrix P.

If $m<n$, the diagonal and first subdiagonal store the lower bidiagonal matrix B, elements below the first subdiagonal store details of the orthogonal matrix Q and elements above the diagonal store details of the orthogonal matrix P.

2: $\mathbf{d}(:)$ - REAL (KIND=nag_wp) array
The dimension of the array \mathbf{d} will be $\max (1, \min (\mathbf{m}, \mathbf{n}))$
The diagonal elements of the bidiagonal matrix B.

3: $\quad \mathbf{e}(:)$ - REAL (KIND=nag_wp) array
The dimension of the array \mathbf{e} will be $\max (1, \min (\mathbf{m}, \mathbf{n})-1)$
The off-diagonal elements of the bidiagonal matrix B.

4: $\quad \operatorname{tauq}(:)$ - REAL (KIND=nag_wp) array
The dimension of the array tauq will be $\max (1, \min (\mathbf{m}, \mathbf{n}))$
Further details of the orthogonal matrix Q.
5: $\quad \boldsymbol{\operatorname { t a u p }}(:)$ - REAL (KIND=$=$ nag_wp) array
The dimension of the array taup will be $\max (1, \min (\mathbf{m}, \mathbf{n}))$
Further details of the orthogonal matrix P.

6: info - INTEGER
info $=0$ unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

$\boldsymbol{\operatorname { i n f }} \mathbf{0}=-i$
If $\operatorname{info}=-i$, parameter i had an illegal value on entry. The parameters are numbered as follows:
1: m, 2: n, 3: a, 4: lda, 5: d, 6: e, 7: tauq, 8: taup, 9: work, 10: lwork, 11: info.
It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

7 Accuracy

The computed bidiagonal form B satisfies $Q B P^{\mathrm{T}}=A+E$, where

$$
\|E\|_{2} \leq c(n) \epsilon\|A\|_{2}
$$

$c(n)$ is a modestly increasing function of n, and ϵ is the machine precision.
The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the computation, but this does not affect the stability of the singular values and vectors.

8 Further Comments

The total number of floating-point operations is approximately $\frac{4}{3} n^{2}(3 m-n)$ if $m \geq n$ or $\frac{4}{3} m^{2}(3 n-m)$ if $m<n$.

If $m \gg n$, it can be more efficient to first call nag_lapack_dgeqrf (f08ae) to perform a $Q R$ factorization of A, and then to call nag_lapack_dgebrd (f08ke) to reduce the factor R to bidiagonal form. This requires approximately $2 n^{2}(m+n)$ floating-point operations.

If $m \ll n$, it can be more efficient to first call nag_lapack_dgelqf (f08ah) to perform an $L Q$ factorization of A, and then to call nag_lapack_dgebrd (f08ke) to reduce the factor L to bidiagonal form. This requires approximately $2 m^{2}(m+n)$ operations.
To form the orthogonal matrices P^{T} and/or Q nag_lapack_dgebrd (f08ke) may be followed by calls to nag_lapack_dorgbr (f08kf):
to form the m by m orthogonal matrix Q

```
[a, info] = f08kf('Q', k, a, tauq);
```

but note that the second dimension of the array a must be at least \mathbf{m}, which may be larger than was required by nag_lapack_dgebrd (f08ke);
to form the n by n orthogonal matrix P^{T}

$$
[a, ~ i n f o]=\text { f08kf('P', k, a, taup); }
$$

but note that the first dimension of the array a, specified by the argument $l d a$, must be at least \mathbf{n}, which may be larger than was required by nag_lapack_dgebrd (f08ke).
To apply Q or P to a real rectangular matrix C, nag_lapack_dgebrd (f08ke) may be followed by a call to nag_lapack_dormbr (f08kg).

The complex analogue of this function is nag_lapack_zgebrd (f08ks).

9 Example

This example reduces the matrix A to bidiagonal form, where

$$
A=\left(\begin{array}{rrrr}
-0.57 & -1.28 & -0.39 & 0.25 \\
-1.93 & 1.08 & -0.31 & -2.14 \\
2.30 & 0.24 & 0.40 & -0.35 \\
-1.93 & 0.64 & -0.66 & 0.08 \\
0.15 & 0.30 & 0.15 & -2.13 \\
-0.02 & 1.03 & -1.43 & 0.50
\end{array}\right)
$$

9.1 Program Text

function f08ke_example
fprintf('fo8ke example results $\left.\backslash n \backslash n^{\prime}\right) ;$
$\begin{array}{rlrr}m= & 6 ; \\ \mathrm{n}= & \text { nag_int (4); } \\ \mathrm{a}= & {\left[\begin{array}{rrrr} & {[-0.57} & -1.28 & -0.39 \\ & -1.93 & 1.08 & -0.25 ;\end{array}\right.} \\ & \end{array}$

```
    2.30 0.24 0.40 -0.35;
-1.93 0.64 -0.66 0.08;
0.15 0.30 0.15 -2.13;
-0.02 1.03 -1.43 0.50];
% Reduce A to bidiagonal form
[~, d, e, tauq, taup, info] = f08ke(a);
fprintf(' Bidiagonal matrix B\n Main diagonal ');
fprintf(' %7.3f',d);
fprintf('\n super-diagonal ');
fprintf(' %7.3f',e);
fprintf('\n');
```


9.2 Program Results

fO8ke example results
Bidiagonal matrix B

| Main diagonal | 3.618 | 2.416 | -1.921 | -1.427 |
| :--- | :--- | :--- | :--- | :--- | :--- |

super-diagonal $1.259 \quad 1.526$-1.189

