
NAG Toolbox

nag_lapack_dgebrd (f08ke)

1 Purpose

nag_lapack_dgebrd (f08ke) reduces a real m by n matrix to bidiagonal form.

2 Syntax

[aa, dd, ee, ttaauuqq, ttaauupp, iinnffoo] = nag_lapack_dgebrd(aa, ’m’, mm, ’n’, nn)

[aa, dd, ee, ttaauuqq, ttaauupp, iinnffoo] = f08ke(aa, ’m’, mm, ’n’, nn)

3 Description

nag_lapack_dgebrd (f08ke) reduces a real m by n matrix A to bidiagonal form B by an orthogonal
transformation: A ¼ QBPT, where Q and PT are orthogonal matrices of order m and n respectively.

If m � n, the reduction is given by:

A ¼ Q
B1
0

� �
PT ¼ Q1B1P

T;

where B1 is an n by n upper bidiagonal matrix and Q1 consists of the first n columns of Q.

If m < n, the reduction is given by

A ¼ Q B1 0
� �

PT ¼ QB1P
T
1 ;

where B1 is an m by m lower bidiagonal matrix and PT
1 consists of the first m rows of PT.

The orthogonal matrices Q and P are not formed explicitly but are represented as products of
elementary reflectors (see the F08 Chapter Introduction for details). Functions are provided to work
with Q and P in this representation (see Section 9).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: aðlda; :Þ – REAL (KIND=nag_wp) array

The first dimension of the array a must be at least max 1;mð Þ.
The second dimension of the array a must be at least max 1;nð Þ.
The m by n matrix A.

5.2 Optional Input Parameters

1: m – INTEGER

Default: the first dimension of the array a.

m, the number of rows of the matrix A.

Constraint: m � 0.
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2: n – INTEGER

Default: the second dimension of the array a.

n, the number of columns of the matrix A.

Constraint: n � 0.

5.3 Output Parameters

1: aðlda; :Þ – REAL (KIND=nag_wp) array

The first dimension of the array a will be max 1;mð Þ.
The second dimension of the array a will be max 1; nð Þ.
If m � n, the diagonal and first superdiagonal store the upper bidiagonal matrix B, elements
below the diagonal store details of the orthogonal matrix Q and elements above the first
superdiagonal store details of the orthogonal matrix P .

If m < n, the diagonal and first subdiagonal store the lower bidiagonal matrix B, elements below
the first subdiagonal store details of the orthogonal matrix Q and elements above the diagonal
store details of the orthogonal matrix P .

2: dð:Þ – REAL (KIND=nag_wp) array

The dimension of the array d will be max 1;min m; nð Þð Þ
The diagonal elements of the bidiagonal matrix B.

3: eð:Þ – REAL (KIND=nag_wp) array

The dimension of the array e will be max 1;min m;nð Þ � 1ð Þ
The off-diagonal elements of the bidiagonal matrix B.

4: tauqð:Þ – REAL (KIND=nag_wp) array

The dimension of the array tauq will be max 1;min m; nð Þð Þ
Further details of the orthogonal matrix Q.

5: taupð:Þ – REAL (KIND=nag_wp) array

The dimension of the array taup will be max 1;min m; nð Þð Þ
Further details of the orthogonal matrix P .

6: info – INTEGER

info ¼ 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

info ¼ �i

If info ¼ �i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: m, 2: n, 3: a, 4: lda, 5: d, 6: e, 7: tauq, 8: taup, 9: work, 10: lwork, 11: info.

It is possible that info refers to a parameter that is omitted from the MATLAB interface. This
usually indicates that an error in one of the other input parameters has caused an incorrect value
to be inferred.
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7 Accuracy

The computed bidiagonal form B satisfies QBPT ¼ Aþ E, where

Ek k2 � c nð Þ� Ak k2;
c nð Þ is a modestly increasing function of n, and � is the machine precision.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the singular values and vectors.

8 Further Comments

The total number of floating-point operations is approximately 4
3n

2 3m� nð Þ if m � n or 4
3m

2 3n�mð Þ
if m < n.

If m � n, it can be more efficient to first call nag_lapack_dgeqrf (f08ae) to perform a QR factorization
of A, and then to call nag_lapack_dgebrd (f08ke) to reduce the factor R to bidiagonal form. This
requires approximately 2n2 mþ nð Þ floating-point operations.

If m � n, it can be more efficient to first call nag_lapack_dgelqf (f08ah) to perform an LQ
factorization of A, and then to call nag_lapack_dgebrd (f08ke) to reduce the factor L to bidiagonal
form. This requires approximately 2m2 mþ nð Þ operations.

To form the orthogonal matrices PT and/or Q nag_lapack_dgebrd (f08ke) may be followed by calls to
nag_lapack_dorgbr (f08kf):

to form the m by m orthogonal matrix Q

[a, info] = f08kf(’Q’, k, a, tauq);

but note that the second dimension of the array a must be at least m, which may be larger than was
required by nag_lapack_dgebrd (f08ke);

to form the n by n orthogonal matrix P T

[a, info] = f08kf(’P’, k, a, taup);

but note that the first dimension of the array a, specified by the argument lda, must be at least n, which
may be larger than was required by nag_lapack_dgebrd (f08ke).

To apply Q or P to a real rectangular matrix C, nag_lapack_dgebrd (f08ke) may be followed by a call
to nag_lapack_dormbr (f08kg).

The complex analogue of this function is nag_lapack_zgebrd (f08ks).

9 Example

This example reduces the matrix A to bidiagonal form, where

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35

�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13

�0:02 1:03 �1:43 0:50

0
BBBBB@

1
CCCCCA
:

9.1 Program Text

function f08ke_example

fprintf(’f08ke example results\n\n’);

m = 6;
n = nag_int(4);
a = [-0.57 -1.28 -0.39 0.25;

-1.93 1.08 -0.31 -2.14;
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2.30 0.24 0.40 -0.35;
-1.93 0.64 -0.66 0.08;
0.15 0.30 0.15 -2.13;

-0.02 1.03 -1.43 0.50];

% Reduce A to bidiagonal form
[~, d, e, tauq, taup, info] = f08ke(a);

fprintf(’ Bidiagonal matrix B\n Main diagonal ’);
fprintf(’ %7.3f’,d);
fprintf(’\n super-diagonal ’);
fprintf(’ %7.3f’,e);
fprintf(’\n’);

9.2 Program Results

f08ke example results

Bidiagonal matrix B
Main diagonal 3.618 2.416 -1.921 -1.427
super-diagonal 1.259 1.526 -1.189
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