NAG Toolbox nag_lapack_zhseqr (f08ps)

1 Purpose

nag_lapack_zhseqr (f08ps) computes all the eigenvalues and, optionally, the Schur factorization of a complex Hessenberg matrix or a complex general matrix which has been reduced to Hessenberg form.

2 Syntax

```
[h, w, z, info] = nag_lapack_zhseqr(job, compz, ilo, ihi, h, z, 'n', n)
[h, w, z, info] = f08ps(job, compz, ilo, ihi, h, z, 'n', n)
```


3 Description

nag_lapack_zhseqr (f08ps) computes all the eigenvalues and, optionally, the Schur factorization of a complex upper Hessenberg matrix H :

$$
H=Z T Z^{\mathrm{H}}
$$

where T is an upper triangular matrix (the Schur form of H), and Z is the unitary matrix whose columns are the Schur vectors z_{i}. The diagonal elements of T are the eigenvalues of H.
The function may also be used to compute the Schur factorization of a complex general matrix A which has been reduced to upper Hessenberg form H :

$$
\begin{aligned}
A & =Q H Q^{\mathrm{H}}, \text { where } Q \text { is unitary }, \\
& =(Q Z) T(Q Z)^{\mathrm{H}}
\end{aligned}
$$

In this case, after nag_lapack_zgehrd (f08ns) has been called to reduce A to Hessenberg form, nag_lapack_zunghr (f08nt) must be called to form Q explicitly; Q is then passed to nag_lapack_zhseqr (f08ps), which must be called with compz $=$ ' V '.

The function can also take advantage of a previous call to nag_lapack_zgebal (f08nv) which may have balanced the original matrix before reducing it to Hessenberg form, so that the Hessenberg matrix H has the structure:

$$
\left(\begin{array}{ccc}
H_{11} & H_{12} & H_{13} \\
& H_{22} & H_{23} \\
& & H_{33}
\end{array}\right)
$$

where H_{11} and H_{33} are upper triangular. If so, only the central diagonal block H_{22} (in rows and columns $i_{\text {lo }}$ to $i_{\text {hi }}$) needs to be further reduced to Schur form (the blocks H_{12} and H_{23} are also affected). Therefore the values of $i_{\text {lo }}$ and $i_{\text {hi }}$ can be supplied to nag_lapack_zhseqr (f08ps) directly. Also, nag_lapack_zgebak (f08nw) must be called after this function to permute the Schur vectors of the balanced matrix to those of the original matrix. If nag_lapack_zgebal (f08nv) has not been called however, then $i_{\text {lo }}$ must be set to 1 and $i_{\text {hi }}$ to n. Note that if the Schur factorization of A is required, nag_lapack_zgebal (f08nv) must not be called with job='S' or 'B', because the balancing transformation is not unitary.
nag_lapack_zhseqr (f08ps) uses a multishift form of the upper Hessenberg $Q R$ algorithm, due to Bai and Demmel (1989). The Schur vectors are normalized so that $\left\|z_{i}\right\|_{2}=1$, but are determined only to within a complex factor of absolute value 1 .

4 References

Bai Z and Demmel J W (1989) On a block implementation of Hessenberg multishift $Q R$ iteration Internat. J. High Speed Comput. 197-112

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: job - CHARACTER(1)
Indicates whether eigenvalues only or the Schur form T is required.

$$
\mathbf{j o b}={ }^{\prime} \mathrm{E}^{\prime}
$$

Eigenvalues only are required.

$$
\mathbf{j o b}={ }^{\prime} \mathrm{S}^{\prime}
$$

The Schur form T is required.

```
Constraint: \(\mathbf{j o b}=\) ' E ' or 'S'.
```

2: compz - CHARACTER(1)
Indicates whether the Schur vectors are to be computed.
$\operatorname{compz}=$ ' N '
No Schur vectors are computed (and the array \mathbf{z} is not referenced).
$\operatorname{compz}=$ ' V^{\prime}
The Schur vectors of A are computed (and the array \mathbf{z} must contain the matrix Q on entry).

```
compz = 'I'
```

The Schur vectors of H are computed (and the array \mathbf{z} is initialized by the function). Constraint: $\mathbf{c o m p z}=$ 'N', 'V' or 'I'.

3: ilo - INTEGER
4: ihi - INTEGER
If the matrix A has been balanced by nag_lapack_zgebal (f 08 nv), then ilo and ihi must contain the values returned by that function. Otherwise, ilo must be set to 1 and ihi to \mathbf{n}.

Constraint: $\mathbf{i l o} \geq 1$ and $\min (\mathbf{i l o}, \mathbf{n}) \leq \mathbf{i h i} \leq \mathbf{n}$.

5: $\quad \mathbf{h}(l d h,:)-$ COMPLEX (KIND=nag_wp) array
The first dimension of the array \mathbf{h} must be at least $\max (1, \mathbf{n})$.
The second dimension of the array \mathbf{h} must be at least $\max (1, \mathbf{n})$.
The n by n upper Hessenberg matrix H, as returned by nag_lapack_zgehrd (f08ns).
6: $\quad \mathbf{z}(l d z,:)$ - COMPLEX (KIND=nag_wp) array
The first dimension, $l d z$, of the array \mathbf{z} must satisfy

```
if compz = 'V' or 'I',ldz\geq max(1,\mathbf{n});
if compz = 'N',ldz\geq1.
```

The second dimension of the array \mathbf{z} must be at least $\max (1, \mathbf{n})$ if $\mathbf{c o m p z}=$ ' V ' or 'I' and at least 1 if compz = ' N '.
If $\mathbf{c o m p z}={ }^{\prime} \mathrm{V}^{\prime}, \mathbf{z}$ must contain the unitary matrix Q from the reduction to Hessenberg form.

If compz $=$ 'I', \mathbf{z} need not be set.

5.2 Optional Input Parameters

1: $\quad \mathbf{n}$ - INTEGER
Default: the first dimension of the array \mathbf{h} and the second dimension of the array \mathbf{h}. (An error is raised if these dimensions are not equal.)
n, the order of the matrix H.
Constraint: $\mathbf{n} \geq 0$.

5.3 Output Parameters

1: $\quad \mathbf{h}(l d h,:)$ - COMPLEX (KIND=nag_wp) array
The first dimension of the array \mathbf{h} will be $\max (1, \mathbf{n})$.
The second dimension of the array \mathbf{h} will be $\max (1, \mathbf{n})$.
If $\mathbf{j o b}=$ ' E ', the array contains no useful information.
If job $=$ 'S', \mathbf{h} stores the upper triangular matrix T from the Schur decomposition (the Schur form) unless info >0.

2: $\mathbf{w}(:)$ - COMPLEX (KIND=nag_wp) array
The dimension of the array \mathbf{w} will be $\max (1, \mathbf{n})$
The computed eigenvalues, unless info >0 (in which case see Section 6). The eigenvalues are stored in the same order as on the diagonal of the Schur form T (if computed).

3: $\quad \mathbf{z}(l d z,:)-$ COMPLEX (KIND=nag_wp) array
The first dimension, $l d z$, of the array \mathbf{z} will be

$$
\begin{aligned}
& \text { if } \operatorname{compz}=\text { ' } \mathrm{V}^{\prime} \text { or ' 'I', } l d z=\max (1, \mathbf{n}) \text {; } \\
& \text { if } \operatorname{compz}={ }^{\mathrm{N}} \text { ', } l d z=1
\end{aligned}
$$

The second dimension of the array \mathbf{z} will be $\max (1, \mathbf{n})$ if $\mathbf{c o m p z}={ }^{\prime} \mathrm{V}$ ' or ' I ' and at least 1 if $\operatorname{compz}=$ ' N '.
If $\mathbf{c o m p z}=$ ' V ' or ' I ', \mathbf{z} contains the unitary matrix of the required Schur vectors, unless info >0.
If $\mathbf{c o m p z}={ }^{\prime} \mathrm{N}^{\prime}, \mathbf{z}$ is not referenced.
4: info - INTEGER
info $=0$ unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

$\boldsymbol{\operatorname { i n f }} \mathbf{0}=-i$
If info $=-i$, parameter i had an illegal value on entry. The parameters are numbered as follows:
1: job, 2: compz, 3: n, 4: ilo, 5: ihi, 6: h, 7: Idh, 8: w, 9: z, 10: ldz, 11: work, 12: lwork, 13: info.

It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

info >0

The algorithm has failed to find all the eigenvalues after a total of $30 \times(\mathbf{i h i}-\mathbf{i l o}+1)$ iterations. If info $=i$, elements $1,2, \ldots$, ilo -1 and $i+1, i+2, \ldots, n$ of \mathbf{w} contain the eigenvalues which have been found.

If $\mathbf{j o b}=$ ' E ', then on exit, the remaining unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix \hat{H}, formed from $\mathbf{h}(\mathbf{i l o}: \mathbf{i n f o}$, ilo : info), i.e., the ilo through info rows and columns of the final output matrix H.

If $\mathbf{j o b}=$ 'S', then on exit

$$
\text { (*) } \quad H_{i} U=U \tilde{H}
$$

for some matrix U, where H_{i} is the input upper Hessenberg matrix and \tilde{H} is an upper Hessenberg matrix formed from $\mathbf{h}(\mathbf{i n f o}+1: \mathbf{i h i}, \mathbf{i n f o}+1: \mathbf{i h i})$.

If $\operatorname{compz}=$ ' V ', then on exit

$$
Z_{\text {out }}=Z_{\text {in }} U
$$

where U is defined in $(*)$ (regardless of the value of $\mathbf{j o b}$).
If $\mathbf{c o m p z}=$ 'I', then on exit

$$
Z_{\mathrm{out}}=U
$$

where U is defined in $(*)$ (regardless of the value of $\mathbf{j o b}$).
If $\mathbf{i n f o}>0$ and $\mathbf{c o m p z}=$ ' N ', then \mathbf{z} is not accessed.

7 Accuracy

The computed Schur factorization is the exact factorization of a nearby matrix $(H+E)$, where

$$
\|E\|_{2}=O(\epsilon)\|H\|_{2}
$$

and ϵ is the machine precision.
If λ_{i} is an exact eigenvalue, and $\tilde{\lambda}_{i}$ is the corresponding computed value, then

$$
\left|\tilde{\lambda}_{i}-\lambda_{i}\right| \leq \frac{c(n) \epsilon\|H\|_{2}}{s_{i}}
$$

where $c(n)$ is a modestly increasing function of n, and s_{i} is the reciprocal condition number of λ_{i}. The condition numbers s_{i} may be computed by calling nag_lapack_ztrsna (f08qy).

8 Further Comments

The total number of real floating-point operations depends on how rapidly the algorithm converges, but is typically about:
$25 n^{3}$ if only eigenvalues are computed;
$35 n^{3}$ if the Schur form is computed;
$70 n^{3}$ if the full Schur factorization is computed.
The real analogue of this function is nag_lapack_dhseqr (f08pe).

9 Example

This example computes all the eigenvalues and the Schur factorization of the upper Hessenberg matrix H, where

$$
H=\left(\begin{array}{rrrr}
-3.9700-5.0400 i & -1.1318-2.5693 i & -4.6027-0.1426 i & -1.4249+1.7330 i \\
-5.4797+0.0000 i & 1.8585-1.5502 i & 4.4145-0.7638 i & -0.4805-1.1976 i \\
0.0000+0.0000 i & 6.2673+0.0000 i & -0.4504-0.0290 i & -1.3467+1.6579 i \\
0.0000+0.0000 i & 0.0000+0.0000 i & -3.5000+0.0000 i & 2.5619-3.3708 i
\end{array}\right) .
$$

See also Section 10 in nag_lapack_zunghr (f08nt), which illustrates the use of this function to compute the Schur factorization of a general matrix.

9.1 Program Text

```
    function f08ps_example
fprintf('f08ps example results\n\n');
a = [ -3.97 - 5.04i, -4.11 + 3.70i, -0.34 + 1.01i, 1.29 - 0.86i;
        0.34 - 1.50i, 1.52 - 0.43i, 1.88 - 5.38i, 3.36 + 0.65i;
        3.31-3.85i, 2.50 + 3.45i, 0.88-1.08i, 0.64 - 1.48i;
    -1.10 + 0.82i, 1.81 - 1.59i, 3.25 + 1.33i, 1.57 - 3.44i];
% Reduce (all of) A to upper Hessenberg Form
ilo = nag_int(1);
ihi = nag_int(4);
[H, tau, info] = f08ns(ilo, ihi, a);
% Form Q
[Q, info] = fO8nt(ilo, ihi, H, tau);
% Schur factorize H = Y*T*Y' and form Z = QY A = QY*T*(QQY)'
job = 'Schur form';
compz = 'Vectors';
[~, w, Z, info] = f08ps( ...
    job, compz, ilo, ihi, H, Q);
disp('Eigenvalues of A');
disp(w);
```


9.2 Program Results

```
        f08ps example results
Eigenvalues of A
    -6.0004 - 6.9998i
    -5.0000 + 2.0060i
        7.9982 - 0.9964i
        3.0023-3.9998i
```

