
NAG Toolbox

nag_lapack_zhseqr (f08ps)

1 Purpose

nag_lapack_zhseqr (f08ps) computes all the eigenvalues and, optionally, the Schur factorization of a
complex Hessenberg matrix or a complex general matrix which has been reduced to Hessenberg form.

2 Syntax

[hh, ww, zz, iinnffoo] = nag_lapack_zhseqr(jjoobb, ccoommppzz, iilloo, iihhii, hh, zz, ’n’, nn)

[hh, ww, zz, iinnffoo] = f08ps(jjoobb, ccoommppzz, iilloo, iihhii, hh, zz, ’n’, nn)

3 Description

nag_lapack_zhseqr (f08ps) computes all the eigenvalues and, optionally, the Schur factorization of a
complex upper Hessenberg matrix H:

H ¼ ZTZH;

where T is an upper triangular matrix (the Schur form of H), and Z is the unitary matrix whose
columns are the Schur vectors zi. The diagonal elements of T are the eigenvalues of H.

The function may also be used to compute the Schur factorization of a complex general matrix A which
has been reduced to upper Hessenberg form H:

A ¼ QHQH; where Q is unitary;
¼ QZð ÞT QZð ÞH:

In this case, after nag_lapack_zgehrd (f08ns) has been called to reduce A to Hessenberg form,
nag_lapack_zunghr (f08nt) must be called to form Q explicitly; Q is then passed to nag_lapack_zhseqr
(f08ps), which must be called with compz ¼ V .

The function can also take advantage of a previous call to nag_lapack_zgebal (f08nv) which may have
balanced the original matrix before reducing it to Hessenberg form, so that the Hessenberg matrix H
has the structure:

H11 H12 H13
H22 H23

H33

0
@

1
A

where H11 and H33 are upper triangular. If so, only the central diagonal block H22 (in rows and
columns ilo to ihi) needs to be further reduced to Schur form (the blocks H12 and H23 are also affected).
Therefore the values of ilo and ihi can be supplied to nag_lapack_zhseqr (f08ps) directly. Also,
nag_lapack_zgebak (f08nw) must be called after this function to permute the Schur vectors of the
balanced matrix to those of the original matrix. If nag_lapack_zgebal (f08nv) has not been called
however, then ilo must be set to 1 and ihi to n. Note that if the Schur factorization of A is required,
nag_lapack_zgebal (f08nv) must not be called with job ¼ S or B , because the balancing
transformation is not unitary.

nag_lapack_zhseqr (f08ps) uses a multishift form of the upper Hessenberg QR algorithm, due to Bai
and Demmel (1989). The Schur vectors are normalized so that zik k2 ¼ 1, but are determined only to
within a complex factor of absolute value 1.

F08 – Least-squares and Eigenvalue Problems (LAPACK) f08ps

Mark 25 f08ps.1

4 References

Bai Z and Demmel J W (1989) On a block implementation of Hessenberg multishift QR iteration
Internat. J. High Speed Comput. 1 97–112

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: job – CHARACTER(1)

Indicates whether eigenvalues only or the Schur form T is required.

job ¼ E
Eigenvalues only are required.

job ¼ S
The Schur form T is required.

Constraint: job ¼ E or S .

2: compz – CHARACTER(1)

Indicates whether the Schur vectors are to be computed.

compz ¼ N
No Schur vectors are computed (and the array z is not referenced).

compz ¼ V
The Schur vectors of A are computed (and the array z must contain the matrix Q on
entry).

compz ¼ I
The Schur vectors of H are computed (and the array z is initialized by the function).

Constraint: compz ¼ N , V or I .

3: ilo – INTEGER
4: ihi – INTEGER

If the matrix A has been balanced by nag_lapack_zgebal (f08nv), then ilo and ihi must contain
the values returned by that function. Otherwise, ilo must be set to 1 and ihi to n.

Constraint: ilo � 1 and min ilo; nð Þ � ihi � n.

5: hðldh; :Þ – COMPLEX (KIND=nag_wp) array

The first dimension of the array h must be at least max 1; nð Þ.
The second dimension of the array h must be at least max 1; nð Þ.
The n by n upper Hessenberg matrix H, as returned by nag_lapack_zgehrd (f08ns).

6: zðldz; :Þ – COMPLEX (KIND=nag_wp) array

The first dimension, ldz, of the array z must satisfy

if compz ¼ V or I , ldz � max 1; nð Þ;
if compz ¼ N , ldz � 1.

The second dimension of the array z must be at least max 1; nð Þ if compz ¼ V or I and at least
1 if compz ¼ N .

If compz ¼ V , z must contain the unitary matrix Q from the reduction to Hessenberg form.

f08ps NAG Toolbox for MATLAB Manual

f08ps.2 Mark 25

If compz ¼ I , z need not be set.

5.2 Optional Input Parameters

1: n – INTEGER

Default: the first dimension of the array h and the second dimension of the array h. (An error is
raised if these dimensions are not equal.)

n, the order of the matrix H.

Constraint: n � 0.

5.3 Output Parameters

1: hðldh; :Þ – COMPLEX (KIND=nag_wp) array

The first dimension of the array h will be max 1; nð Þ.
The second dimension of the array h will be max 1; nð Þ.
If job ¼ E , the array contains no useful information.

If job ¼ S , h stores the upper triangular matrix T from the Schur decomposition (the Schur
form) unless info > 0.

2: wð:Þ – COMPLEX (KIND=nag_wp) array

The dimension of the array w will be max 1;nð Þ
The computed eigenvalues, unless info > 0 (in which case see Section 6). The eigenvalues are
stored in the same order as on the diagonal of the Schur form T (if computed).

3: zðldz; :Þ – COMPLEX (KIND=nag_wp) array

The first dimension, ldz, of the array z will be

if compz ¼ V or I , ldz ¼ max 1; nð Þ;
if compz ¼ N , ldz ¼ 1.

The second dimension of the array z will be max 1;nð Þ if compz ¼ V or I and at least 1 if
compz ¼ N .

If compz ¼ V or I , z contains the unitary matrix of the required Schur vectors, unless info > 0.

If compz ¼ N , z is not referenced.

4: info – INTEGER

info ¼ 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

info ¼ �i

If info ¼ �i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: job, 2: compz, 3: n, 4: ilo, 5: ihi, 6: h, 7: ldh, 8: w, 9: z, 10: ldz, 11: work, 12: lwork, 13:
info.

It is possible that info refers to a parameter that is omitted from the MATLAB interface. This
usually indicates that an error in one of the other input parameters has caused an incorrect value
to be inferred.

F08 – Least-squares and Eigenvalue Problems (LAPACK) f08ps

Mark 25 f08ps.3

info > 0

The algorithm has failed to find all the eigenvalues after a total of 30� ihi� iloþ 1ð Þ iterations.
If info ¼ i, elements 1; 2; . . . ; ilo� 1 and iþ 1; iþ 2; . . . ; n of w contain the eigenvalues which
have been found.

If job ¼ E , then on exit, the remaining unconverged eigenvalues are the eigenvalues of the
upper Hessenberg matrix Ĥ, formed from hðilo : info; ilo : infoÞ, i.e., the ilo through info rows
and columns of the final output matrix H.

If job ¼ S , then on exit

�ð Þ HiU ¼ U ~H

for some matrix U , where Hi is the input upper Hessenberg matrix and ~H is an upper Hessenberg
matrix formed from hðinfoþ 1 : ihi; infoþ 1 : ihiÞ.
If compz ¼ V , then on exit

Zout ¼ ZinU

where U is defined in �ð Þ (regardless of the value of job).

If compz ¼ I , then on exit

Zout ¼ U

where U is defined in �ð Þ (regardless of the value of job).

If info > 0 and compz ¼ N , then z is not accessed.

7 Accuracy

The computed Schur factorization is the exact factorization of a nearby matrix H þ Eð Þ, where
Ek k2 ¼ O �ð Þ Hk k2;

and � is the machine precision.

If �i is an exact eigenvalue, and ~�i is the corresponding computed value, then

~�i � �i

�� �� � c nð Þ� Hk k2
si

;

where c nð Þ is a modestly increasing function of n, and si is the reciprocal condition number of �i. The
condition numbers si may be computed by calling nag_lapack_ztrsna (f08qy).

8 Further Comments

The total number of real floating-point operations depends on how rapidly the algorithm converges, but
is typically about:

25n3 if only eigenvalues are computed;

35n3 if the Schur form is computed;

70n3 if the full Schur factorization is computed.

The real analogue of this function is nag_lapack_dhseqr (f08pe).

f08ps NAG Toolbox for MATLAB Manual

f08ps.4 Mark 25

9 Example

This example computes all the eigenvalues and the Schur factorization of the upper Hessenberg matrix
H, where

H ¼
�3:9700� 5:0400i �1:1318� 2:5693i �4:6027� 0:1426i �1:4249þ 1:7330i
�5:4797þ 0:0000i 1:8585� 1:5502i 4:4145� 0:7638i �0:4805� 1:1976i
0:0000þ 0:0000i 6:2673þ 0:0000i �0:4504� 0:0290i �1:3467þ 1:6579i
0:0000þ 0:0000i 0:0000þ 0:0000i �3:5000þ 0:0000i 2:5619� 3:3708i

0
B@

1
CA:

See also Section 10 in nag_lapack_zunghr (f08nt), which illustrates the use of this function to compute
the Schur factorization of a general matrix.

9.1 Program Text

function f08ps_example

fprintf(’f08ps example results\n\n’);

a = [-3.97 - 5.04i, -4.11 + 3.70i, -0.34 + 1.01i, 1.29 - 0.86i;
0.34 - 1.50i, 1.52 - 0.43i, 1.88 - 5.38i, 3.36 + 0.65i;
3.31 - 3.85i, 2.50 + 3.45i, 0.88 - 1.08i, 0.64 - 1.48i;

-1.10 + 0.82i, 1.81 - 1.59i, 3.25 + 1.33i, 1.57 - 3.44i];

% Reduce (all of) A to upper Hessenberg Form
ilo = nag_int(1);
ihi = nag_int(4);
[H, tau, info] = f08ns(ilo, ihi, a);

% Form Q
[Q, info] = f08nt(ilo, ihi, H, tau);

% Schur factorize H = Y*T*Y’ and form Z = QY A = QY*T*(QQY)’
job = ’Schur form’;
compz = ’Vectors’;
[~, w, Z, info] = f08ps(...

job, compz, ilo, ihi, H, Q);

disp(’Eigenvalues of A’);
disp(w);

9.2 Program Results

f08ps example results

Eigenvalues of A
-6.0004 - 6.9998i
-5.0000 + 2.0060i
7.9982 - 0.9964i
3.0023 - 3.9998i

F08 – Least-squares and Eigenvalue Problems (LAPACK) f08ps

Mark 25 f08ps.5 (last)

	nag_lapack_zhseqr (f08ps)
	1 Purpose
	2 Syntax
	3 Description
	4 References
	Bai and Demmel (1989)
	Golub and Van Loan (1996)

	5 Parameters
	5.1 Compulsory Input Parameters
	job
	compz
	ilo
	ihi
	h
	z

	5.2 Optional Input Parameters
	n

	5.3 Output Parameters
	h
	w
	z
	info

	6 Error Indicators and Warnings
	info=-i
	info>0

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Results

	NAG Toolbox for Matlab Manual, Mark 25
	Chapters of the Library
	A00 - library identification
	A00 Chapter Introduction

	A02 - complex arithmetic
	A02 Chapter Introduction

	C02 - zeros of polynomials
	C02 Chapter Introduction

	C05 - roots of one or more transcendental equations
	C05 Chapter Introduction

	C06 - summation of series
	C06 Chapter Introduction

	C09 - wavelet transforms
	C09 Chapter Introduction

	D01 - quadrature
	D01 Chapter Introduction

	D02 - ordinary differential equations
	D02 Chapter Introduction

	D03 - partial differential equations
	D03 Chapter Introduction

	D04 - numerical differentiation
	D04 Chapter Introduction

	D05 - integral equations
	D05 Chapter Introduction

	D06 - mesh generation
	D06 Chapter Introduction

	E01 - interpolation
	E01 Chapter Introduction

	E02 - curve and surface fitting
	E02 Chapter Introduction

	E04 - minimizing or maximizing a function
	E04 Chapter Introduction

	E05 - global optimization of a function
	E05 Chapter Introduction

	F - linear algebra
	F Chapter Introduction

	F01 - matrix operations, including inversion
	F01 Chapter Introduction

	F02 - eigenvalues and eigenvectors
	F02 Chapter Introduction

	F03 - determinants
	F03 Chapter Introduction

	F04 - simultaneous linear equations
	F04 Chapter Introduction

	F05 - orthogonalization
	F05 Chapter Introduction

	F07 - linear equations (lapack)
	F07 Chapter Introduction

	F08 - least squares and eigenvalue problems (lapack)
	F08 Chapter Introduction

	F11 - large scale linear systems
	F11 Chapter Introduction

	F12 - large scale eigenproblems
	F12 Chapter Introduction

	F16 - further linear algebra support routines
	F16 Chapter Introduction

	G01 - simple calculations on statistical data
	G01 Chapter Introduction

	G02 - correlation and regression analysis
	G02 Chapter Introduction

	G03 - multivariate methods
	G03 Chapter Introduction

	G04 - analysis of variance
	G04 Chapter Introduction

	G05 - random number generators
	G05 Chapter Introduction

	G07 - univariate estimation
	G07 Chapter Introduction

	G08 - nonparametric statistics
	G08 Chapter Introduction

	G10 - smoothing in statistics
	G10 Chapter Introduction

	G11 - contingency table analysis
	G11 Chapter Introduction

	G12 - survival analysis
	G12 Chapter Introduction

	G13 - time series analysis
	G13 Chapter Introduction

	H - operations research
	H Chapter Introduction

	M01 - sorting and searching
	M01 Chapter Introduction

	S - approximations of special functions
	S Chapter Introduction

	X01 - mathematical constants
	X01 Chapter Introduction

	X02 - machine constants
	X02 Chapter Introduction

	X03 - inner products
	X03 Chapter Introduction

	X04 - input/output utilities
	X04 Chapter Introduction

	X05 - date and time utilities
	X05 Chapter Introduction

	X06 - Multi-threading Utilities
	X06 Chapter Introduction

