NAG Toolbox

nag lapack dtrexc (f08qf)

1 Purpose

nag lapack dtrexc (f08qf) reorders the Schur factorization of a real general matrix.

2 Syntax

```
[t, q, ifst, ilst, info] = nag_lapack_dtrexc(compq, t, q, ifst, ilst, 'n', n)
[t, q, ifst, ilst, info] = f08qf(compq, t, q, ifst, ilst, 'n', n)
```

3 Description

nag_lapack_dtrexc (f08qf) reorders the Schur factorization of a real general matrix $A = QTQ^{T}$, so that the diagonal element or block of T with row index **ifst** is moved to row **ilst**.

The reordered Schur form \tilde{T} is computed by an orthogonal similarity transformation: $\tilde{T} = Z^TTZ$. Optionally the updated matrix \tilde{Q} of Schur vectors is computed as $\tilde{Q} = QZ$, giving $A = \tilde{Q}\tilde{T}\tilde{Q}^T$.

4 References

Golub G H and Van Loan C F (1996) *Matrix Computations* (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

```
1: compq – CHARACTER(1)
```

Indicates whether the matrix Q of Schur vectors is to be updated.

```
compq = 'V'
```

The matrix Q of Schur vectors is updated.

```
compq = 'N'
```

No Schur vectors are updated.

Constraint: compq = 'V' or 'N'.

2: $\mathbf{t}(ldt,:) - REAL (KIND=nag_wp) array$

The first dimension of the array \mathbf{t} must be at least $\max(1, \mathbf{n})$.

The second dimension of the array \mathbf{t} must be at least max $(1, \mathbf{n})$.

The n by n upper quasi-triangular matrix T in canonical Schur form, as returned by nag_lapack_dhseqr (f08pe).

3: q(ldq,:) - REAL (KIND=nag wp) array

The first dimension, ldq, of the array \mathbf{q} must satisfy

```
if compq = 'V', ldq \ge max(1, \mathbf{n}); if compq = 'N', ldq \ge 1.
```

The second dimension of the array \mathbf{q} must be at least $\max(1, \mathbf{n})$ if $\mathbf{compq} = 'V'$ and at least 1 if $\mathbf{compq} = 'N'$.

Mark 25 f08qf.1

If compq = V', q must contain the n by n orthogonal matrix Q of Schur vectors.

- 4: **ifst** INTEGER
- 5: **ilst** INTEGER

ifst and **ilst** must specify the reordering of the diagonal elements or blocks of T. The element or block with row index **ifst** is moved to row **ilst** by a sequence of exchanges between adjacent elements or blocks.

Constraint: 1 < ifst < n and 1 < ilst < n.

5.2 Optional Input Parameters

1: $\mathbf{n} - \text{INTEGER}$

Default: the first dimension of the array **t** and the second dimension of the array **t**. (An error is raised if these dimensions are not equal.)

n, the order of the matrix T.

Constraint: $\mathbf{n} \geq 0$.

5.3 Output Parameters

1: $\mathbf{t}(ldt,:)$ - REAL (KIND=nag_wp) array

The first dimension of the array t will be $max(1, \mathbf{n})$.

The second dimension of the array \mathbf{t} will be $\max(1, \mathbf{n})$.

t stores the updated matrix \tilde{T} . See also Section 9.

2: $\mathbf{q}(ldq,:) - REAL (KIND=nag_wp) array$

The first dimension, ldq, of the array **q** will be

```
if compq = 'V', ldq = max(1, \mathbf{n}); if compq = 'N', ldq = 1.
```

The second dimension of the array \mathbf{q} will be $\max(1, \mathbf{n})$ if $\mathbf{compq} = \mathbf{V}$ and at least 1 if $\mathbf{compq} = \mathbf{N}$.

If **compq** = 'V', **q** contains the updated matrix of Schur vectors.

If compq = 'N', q is not referenced.

- 3: **ifst** INTEGER
- 4: **ilst** INTEGER

If **ifst** pointed to the second row of a 2 by 2 block on entry, it is changed to point to the first row. **ilst** always points to the first row of the block in its final position (which may differ from its input value by ± 1).

5: **info** – INTEGER

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

```
info = -i
```

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: compq, 2: n, 3: t, 4: ldt, 5: q, 6: ldq, 7: ifst, 8: ilst, 9: work, 10: info.

f08qf.2 Mark 25

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

info = 1 (warning)

Two adjacent diagonal elements or blocks could not be successfully exchanged. This error can only occur if the exchange involves at least one 2 by 2 block; it implies that the problem is very ill-conditioned, and that the eigenvalues of the two blocks are very close. On exit, T may have been partially reordered, and **ilst** points to the first row of the current position of the block being moved; Q (if requested) is updated consistently with T.

7 Accuracy

The computed matrix \tilde{T} is exactly similar to a matrix (T+E), where

$$\|E\|_2 = O(\epsilon) \|T\|_2,$$

and ϵ is the *machine precision*.

Note that if a 2 by 2 diagonal block is involved in the reordering, its off-diagonal elements are in general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2 by 2 block to break into two 1 by 1 blocks, i.e., for a pair of complex eigenvalues to become purely real. The values of real eigenvalues however are never changed by the reordering.

8 Further Comments

The total number of floating-point operations is approximately 6nr if $\mathbf{compq} = 'N'$, and 12nr if $\mathbf{compq} = 'V'$, where $r = |\mathbf{ifst} - \mathbf{ilst}|$.

The input matrix T must be in canonical Schur form, as is the output matrix \tilde{T} . This has the following structure.

If all the computed eigenvalues are real, T is upper triangular and its diagonal elements are the eigenvalues.

If some of the computed eigenvalues form complex conjugate pairs, then T has 2 by 2 diagonal blocks. Each diagonal block has the form

$$\begin{pmatrix} t_{ii} & t_{i,i+1} \\ t_{i+1,i} & t_{i+1,i+1} \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \alpha \end{pmatrix}$$

where $\beta \gamma < 0$. The corresponding eigenvalues are $\alpha \pm \sqrt{\beta \gamma}$.

The complex analogue of this function is nag lapack ztrexc (f08qt).

9 Example

This example reorders the Schur factorization of the matrix T so that the 2 by 2 block with row index 2 is moved to row 1, where

$$T = \begin{pmatrix} 0.80 & -0.11 & 0.01 & 0.03 \\ 0.00 & -0.10 & 0.25 & 0.35 \\ 0.00 & -0.65 & -0.10 & 0.20 \\ 0.00 & 0.00 & 0.00 & -0.10 \end{pmatrix}.$$

Mark 25 f08qf.3

9.1 Program Text

9.2 Program Results

```
f08qf example results
```

```
Reordered Schur Form
   -0.1050
            -0.6465
                        0.0877
                                  0.2054
    0.2513
             -0.1050
                                 0.3480
                        0.0919
        0
                  0
                        0.8000
                                 -0.0113
         0
                   0
                                 -0.1000
                             Ω
```

f08qf.4 (last) Mark 25