NAG Toolbox

nag_lapack_ztrsna (f08qy)

1 Purpose

nag_lapack_ztrsna (f08qy) estimates condition numbers for specified eigenvalues and/or right eigenvectors of a complex upper triangular matrix.

2 Syntax

```
[s, sep, m, info] = nag_lapack_ztrsna(job, howmny, select, t, vl, vr, mm, 'n', n)
[s, sep, m, info] = f08qy(job, howmny, select, t, vl, vr, mm, 'n', n)
```

3 Description

nag_lapack_ztrsna (f08qy) estimates condition numbers for specified eigenvalues and/or right eigenvectors of a complex upper triangular matrix T. These are the same as the condition numbers of the eigenvalues and right eigenvectors of an original matrix $A = ZTZ^{\rm H}$ (with unitary Z), from which T may have been derived.

nag_lapack_ztrsna (f08qy) computes the reciprocal of the condition number of an eigenvalue λ_i as

$$s_i = \frac{|v^{\mathsf{H}}u|}{\|u\|_E \|v\|_E},$$

where u and v are the right and left eigenvectors of T, respectively, corresponding to λ_i . This reciprocal condition number always lies between zero (i.e., ill-conditioned) and one (i.e., well-conditioned).

An approximate error estimate for a computed eigenvalue λ_i is then given by

$$\frac{\epsilon ||T||}{s_i}$$

where ϵ is the *machine precision*.

To estimate the reciprocal of the condition number of the right eigenvector corresponding to λ_i , the function first calls nag_lapack_ztrexc (f08qt) to reorder the eigenvalues so that λ_i is in the leading position:

$$T = Q \begin{pmatrix} \lambda_i & c^{\mathrm{H}} \\ 0 & T_{22} \end{pmatrix} Q^{\mathrm{H}}.$$

The reciprocal condition number of the eigenvector is then estimated as sep_i , the smallest singular value of the matrix $(T_{22} - \lambda_i I)$. This number ranges from zero (i.e., ill-conditioned) to very large (i.e., well-conditioned).

An approximate error estimate for a computed right eigenvector u corresponding to λ_i is then given by

$$\frac{\epsilon \|T\|}{sep_i}$$
.

4 References

Golub G H and Van Loan C F (1996) *Matrix Computations* (3rd Edition) Johns Hopkins University Press, Baltimore

Mark 25 f08qy.1

5 Parameters

5.1 Compulsory Input Parameters

1: **job** – CHARACTER(1)

Indicates whether condition numbers are required for eigenvalues and/or eigenvectors.

$$job = 'E'$$

Condition numbers for eigenvalues only are computed.

$$job = 'V'$$

Condition numbers for eigenvectors only are computed.

$$job = 'B'$$

Condition numbers for both eigenvalues and eigenvectors are computed.

Constraint: job = 'E', 'V' or 'B'.

2: **howmny** – CHARACTER(1)

Indicates how many condition numbers are to be computed.

$$howmny = 'A'$$

Condition numbers for all eigenpairs are computed.

Condition numbers for selected eigenpairs (as specified by select) are computed.

Constraint: howmny = 'A' or 'S'.

3: **select**(:) – LOGICAL array

The dimension of the array **select** must be at least $max(1, \mathbf{n})$ if **howmny** = 'S', and at least 1 otherwise

Specifies the eigenpairs for which condition numbers are to be computed if **howmny** = 'S'. To select condition numbers for the eigenpair corresponding to the eigenvalue λ_j , **select**(j) must be set to *true*.

If howmny = 'A', select is not referenced.

4: $\mathbf{t}(ldt,:)$ - COMPLEX (KIND=nag wp) array

The first dimension of the array t must be at least max $(1, \mathbf{n})$.

The second dimension of the array \mathbf{t} must be at least $\max(1, \mathbf{n})$.

The n by n upper triangular matrix T, as returned by nag lapack zhseqr (f08ps).

5: vl(ldvl,:) - COMPLEX (KIND=nag wp) array

The first dimension, ldvl, of the array vl must satisfy

if
$$\mathbf{job} = 'E'$$
 or 'B', $ldvl \ge \max(1, \mathbf{n})$; if $\mathbf{job} = 'V'$, $ldvl \ge 1$.

The second dimension of the array v1 must be at least max(1, mm) if job = 'E' or 'B' and at least 1 if job = 'V'.

If $\mathbf{job} = 'E'$ or 'B', \mathbf{vl} must contain the left eigenvectors of T (or of any matrix QTQ^H with Q unitary) corresponding to the eigenpairs specified by **howmny** and **select**. The eigenvectors **must** be stored in consecutive columns of \mathbf{vl} , as returned by nag_lapack_zhsein (f08px) or nag_lapack_ztrevc (f08qx).

If job = 'V', vl is not referenced.

f08qy.2 Mark 25

6: **vr**(*ldvr*,:) – COMPLEX (KIND=nag_wp) array

The first dimension, ldvr, of the array vr must satisfy

if
$$\mathbf{job} = 'E'$$
 or 'B', $ldvr \ge \max(1, \mathbf{n})$; if $\mathbf{job} = 'V'$, $ldvr > 1$.

The second dimension of the array vr must be at least max(1, mm) if job = 'E' or 'B' and at least 1 if job = 'V'.

If $\mathbf{job} = 'E'$ or 'B', \mathbf{vr} must contain the right eigenvectors of T (or of any matrix QTQ^{H} with Q unitary) corresponding to the eigenpairs specified by **howmny** and **select**. The eigenvectors **must** be stored in consecutive columns of \mathbf{vr} , as returned by nag_lapack_zhsein (f08px) or nag_lapack_ztrevc (f08qx).

If job = 'V', vr is not referenced.

7: **mm** – INTEGER

The number of elements in the arrays **s** and **sep**, and the number of columns in the arrays **vl** and **vr** (if used). The precise number required, m, is n if **howmny** = 'A'; if **howmny** = 'S', m is the number of selected eigenpairs (see **select**), in which case $0 \le m \le n$.

Constraints:

```
if howmny = 'A', mm \ge n; otherwise mm \ge m.
```

5.2 Optional Input Parameters

1: $\mathbf{n} - \text{INTEGER}$

Default: the first dimension of the array **t** and the second dimension of the array **t**. (An error is raised if these dimensions are not equal.)

n, the order of the matrix T.

Constraint: $\mathbf{n} \geq 0$.

5.3 Output Parameters

1: $\mathbf{s}(:) - \text{REAL (KIND=nag wp) array}$

The dimension of the array s will be max(1, mm) if job = 'E' or 'B' and 1 otherwise

The reciprocal condition numbers of the selected eigenvalues if $\mathbf{job} = 'E'$ or 'B', stored in consecutive elements of the array. Thus $\mathbf{s}(j)$, $\mathbf{sep}(j)$ and the jth columns of \mathbf{vl} and \mathbf{vr} all correspond to the same eigenpair (but not in general the jth eigenpair unless all eigenpairs have been selected).

If job = 'V', s is not referenced.

2: **sep**(:) - REAL (KIND=nag_wp) array

The dimension of the array sep will be max(1, mm) if job = 'V' or 'B' and 1 otherwise

The estimated reciprocal condition numbers of the selected right eigenvectors if job = 'V' or 'B', stored in consecutive elements of the array.

If job = 'E', sep is not referenced.

m - INTEGER

m, the number of selected eigenpairs. If **howmny** = 'A', **m** is set to n.

4: **info** – INTEGER

info = 0 unless the function detects an error (see Section 6).

Mark 25 f08qy.3

6 Error Indicators and Warnings

```
info = -i
```

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: job, 2: howmny, 3: select, 4: n, 5: t, 6: ldt, 7: vl, 8: ldvl, 9: vr, 10: ldvr, 11: s, 12: sep, 13: mm, 14: m, 15: work, 16: ldwork, 17: rwork, 18: info.

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

7 Accuracy

The computed values sep_i may over estimate the true value, but seldom by a factor of more than 3.

8 Further Comments

The real analogue of this function is nag lapack dtrsna (f08ql).

9 Example

This example computes approximate error estimates for all the eigenvalues and right eigenvectors of the matrix T, where

```
T = \begin{pmatrix} -6.0004 - 6.9999i & 0.3637 - 0.3656i & -0.1880 + 0.4787i & 0.8785 - 0.2539i \\ 0.0000 + 0.0000i & -5.0000 + 2.0060i & -0.0307 - 0.7217i & -0.2290 + 0.1313i \\ 0.0000 + 0.0000i & 0.0000 + 0.0000i & 7.9982 - 0.9964i & 0.9357 + 0.5359i \\ 0.0000 + 0.0000i & 0.0000 + 0.0000i & 0.0000 + 0.0000i & 3.0023 - 3.9998i \end{pmatrix}
```

9.1 Program Text

```
function f08qy_example
fprintf('f08qy example results\n');
% Matrix in complex Schur form
n = nag_int(4);
T = [-6.0004 - 6.9999i, 0.3637 - 0.3656i, -0.1880 + 0.4787i, 0.8785 - 0.2539i;
             + Oi,
                       -5.0000 + 2.0060i, -0.0307 - 0.7217i,-0.2290 + 0.1313i;
      0
                                           7.9982 - 0.9964i, 0.9357 + 0.5359i;
      0
             + 0i,
                       Ω
                               + Oi,
                                                   + Oi,
      0
             + Oi,
                        0
                               + Oi,
                                                              3.0023 - 3.9998i];
% Calculate the eigenvectors of T
select = [false];
vl = complex(zeros(n,n));
vr = complex(zeros(n,n));
job = 'Both';
howmny = 'All';
[T, vl, vr, m, info] = ...
f08qx( ...
       job, howmny, select, T, vl, vr, n);
[s, sep, m, info] = ...
f08qy( ...
       job, howmny, select, T, vl, vr, n);
disp('s:');
disp(s');
disp('sep:');
disp(sep');
tnorm = norm(T, 1);
disp('Approximate error estimates for eigenvalues of T (machine-dependent)');
```

f08qy.4 Mark 25

9.2 Program Results

```
f08qy example results
s:
    0.9932
           0.9964
                    0.9814
                               0.9779
sep:
   8.4012
             8.0215
                      5.8292
                               5.8292
Approximate error estimates for eigenvalues of {\tt T} (machine-dependent)
   1.0e-15 1.0e-15
                       1.1e-15 1.1e-15
Approximate error estimates for right eigenvectors (machine-dependent)
            1.3e-16
                       1.8e-16
                                  1.8e-16
   1.2e-16
```

Mark 25 f08qy.5 (last)