NAG Toolbox

nag lapack dsygv (f08sa)

1 Purpose

nag_lapack_dsygv (f08sa) computes all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form

$$Az = \lambda Bz$$
, $ABz = \lambda z$ or $BAz = \lambda z$,

where A and B are symmetric and B is also positive definite.

2 Syntax

```
[a, b, w, info] = nag_lapack_dsygv(itype, jobz, uplo, a, b, 'n', n)
[a, b, w, info] = f08sa(itype, jobz, uplo, a, b, 'n', n)
```

3 Description

nag_lapack_dsygv (f08sa) first performs a Cholesky factorization of the matrix B as $B = U^T U$, when $\mathbf{uplo} = 'U'$ or $B = LL^T$, when $\mathbf{uplo} = 'L'$. The generalized problem is then reduced to a standard symmetric eigenvalue problem

$$Cx = \lambda x$$
,

which is solved for the eigenvalues and, optionally, the eigenvectors; the eigenvectors are then backtransformed to give the eigenvectors of the original problem.

For the problem $Az = \lambda Bz$, the eigenvectors are normalized so that the matrix of eigenvectors, z, satisfies

$$Z^{T}AZ = \Lambda$$
 and $Z^{T}BZ = I$,

where Λ is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem $ABz = \lambda z$ we correspondingly have

$$Z^{-1}AZ^{-T} = \Lambda$$
 and $Z^{T}BZ = I$,

and for $BAz = \lambda z$ we have

$$Z^{\mathsf{T}}AZ = \Lambda$$
 and $Z^{\mathsf{T}}B^{-1}Z = I$.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) *LAPACK Users' Guide* (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) *Matrix Computations* (3rd Edition) Johns Hopkins University Press, Baltimore

Mark 25 f08sa.1

5 Parameters

5.1 Compulsory Input Parameters

1: **itype** – INTEGER

Specifies the problem type to be solved.

$$\mathbf{itype} = 1 \\ Az = \lambda Bz.$$

$$\mathbf{itype} = 2 \\ ABz = \lambda z.$$

itype =
$$3$$

 $BAz = \lambda z$.

Constraint: **itype** = 1, 2 or 3.

2: **jobz** – CHARACTER(1)

Indicates whether eigenvectors are computed.

$$jobz = 'N'$$

Only eigenvalues are computed.

$$jobz = 'V'$$

Eigenvalues and eigenvectors are computed.

Constraint: jobz = 'N' or 'V'.

3: **uplo** – CHARACTER(1)

If $\mathbf{uplo} = 'U'$, the upper triangles of A and B are stored.

If $\mathbf{uplo} = 'L'$, the lower triangles of A and B are stored.

Constraint: **uplo** = 'U' or 'L'.

4: $\mathbf{a}(lda,:) - \text{REAL}$ (KIND=nag wp) array

The first dimension of the array \mathbf{a} must be at least $\max(1, \mathbf{n})$.

The second dimension of the array \mathbf{a} must be at least $\max(1, \mathbf{n})$.

The n by n symmetric matrix A.

If $\mathbf{uplo} = 'U'$, the upper triangular part of a must be stored and the elements of the array below the diagonal are not referenced.

If $\mathbf{uplo} = 'L'$, the lower triangular part of a must be stored and the elements of the array above the diagonal are not referenced.

5: $\mathbf{b}(ldb,:) - \text{REAL (KIND=nag_wp)}$ array

The first dimension of the array **b** must be at least $max(1, \mathbf{n})$.

The second dimension of the array **b** must be at least $max(1, \mathbf{n})$.

The n by n symmetric positive definite matrix B.

If $\mathbf{uplo} = 'U'$, the upper triangular part of b must be stored and the elements of the array below the diagonal are not referenced.

If $\mathbf{uplo} = 'L'$, the lower triangular part of b must be stored and the elements of the array above the diagonal are not referenced.

f08sa.2 Mark 25

5.2 Optional Input Parameters

1: $\mathbf{n} - \text{INTEGER}$

Default: the first dimension of the arrays **a**, **b** and the second dimension of the arrays **a**, **b**. (An error is raised if these dimensions are not equal.)

n, the order of the matrices A and B.

Constraint: $\mathbf{n} \geq 0$.

5.3 Output Parameters

1:
$$\mathbf{a}(lda,:) - \text{REAL (KIND=nag_wp)}$$
 array

The first dimension of the array \mathbf{a} will be $\max(1, \mathbf{n})$.

The second dimension of the array \mathbf{a} will be $\max(1, \mathbf{n})$.

If jobz = 'V', a contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows:

if **itype** = 1 or 2,
$$Z^TBZ = I$$
;
if **itype** = 3, $Z^TB^{-1}Z = I$.

If $\mathbf{jobz} = 'N'$, the upper triangle (if $\mathbf{uplo} = 'U'$) or the lower triangle (if $\mathbf{uplo} = 'L'$) of \mathbf{a} , including the diagonal, is overwritten.

2:
$$\mathbf{b}(ldb,:) - \text{REAL (KIND=nag wp) array}$$

The first dimension of the array b will be max(1, n).

The second dimension of the array **b** will be $max(1, \mathbf{n})$.

If $0 \le \inf o \le n$, the part of **b** containing the matrix stores the triangular factor U or L from the Cholesky factorization $B = U^T U$ or $B = L L^T$.

3:
$$\mathbf{w}(\mathbf{n}) - \text{REAL (KIND=nag_wp)}$$
 array

The eigenvalues in ascending order.

4: **info** – INTEGER

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

```
info = -i
```

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

info = 1 to n

If info = i, nag_lapack_dsyev (f08fa) failed to converge; i i off-diagonal elements of an intermediate tridiagonal form did not converge to zero.

Mark 25 f08sa.3

info > n

nag_lapack_dpotrf (f07fd) returned an error code; i.e., if $\mathbf{info} = \mathbf{n} + i$, for $1 \le i \le \mathbf{n}$, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and vectors may be large, although when the diagonal elements of B differ widely in magnitude the eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section 4.10 of Anderson *et al.* (1999) for details of the error bounds.

The example program below illustrates the computation of approximate error bounds.

8 Further Comments

The total number of floating-point operations is proportional to n^3 .

The complex analogue of this function is nag lapack zhegv (f08sn).

9 Example

This example finds all the eigenvalues and eigenvectors of the generalized symmetric eigenproblem $Az = \lambda Bz$, where

$$A = \begin{pmatrix} 0.24 & 0.39 & 0.42 & -0.16 \\ 0.39 & -0.11 & 0.79 & 0.63 \\ 0.42 & 0.79 & -0.25 & 0.48 \\ -0.16 & 0.63 & 0.48 & -0.03 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 4.16 & -3.12 & 0.56 & -0.10 \\ -3.12 & 5.03 & -0.83 & 1.09 \\ 0.56 & -0.83 & 0.76 & 0.34 \\ -0.10 & 1.09 & 0.34 & 1.18 \end{pmatrix}$$

together with and estimate of the condition number of B, and approximate error bounds for the computed eigenvalues and eigenvectors.

The example program for nag_lapack_dsygvd (f08sc) illustrates solving a generalized symmetric eigenproblem of the form $ABz = \lambda z$.

9.1 Program Text

```
function f08sa_example
fprintf('f08sa example results\n\n');
% Upper triangular parts of symmetric matrix A and symmetric definite matrix B
uplo = 'Upper';
n = 4;
a = [0.24, 0.39, 0.42, -0.16;
    Ο,
           -0.11, 0.79, 0.63;
    Ο,
           Ο,
                 -0.25, 0.48;
           Ο,
                  Ο,
    Ο,
 = [4.16, -3.12, 0.56, -0.10;
           5.03, -0.83, 1.09;
     Ο,
    Ο,
           Ο,
                  0.76, 0.34;
     0,
           Ο,
                  Ο,
                          1.18];
```

% Generalized eigenvalues and eigenvectors for problem Az = lambda Bz
itype = nag_int(1);
jobz = 'Vectors';
[Z, U, w, info] = f08sa(...
itype, jobz, uplo, a, b);
% Normalize eigenvectors: largest element positive (with z'Bz = I)
for j = 1:n
 [^,k] = max(abs(Z(:,j)));
if Z(k,j) < 0</pre>

f08sa.4 Mark 25

```
Z(:,j) = -Z(:,j);
end
end

disp('Eigenvalues');
disp(w');
disp('Eigenvectors');
disp(Z);
```

9.2 Program Results

f08sa example results

0.5740 -0.5329 -0.0371 0.676 1.5428 0.3496 0.0505 0.927	Eigenvalues -2.2254	-0.4548	0.1001	1.1270
	0.0690 0.5740 1.5428	-0.5329 0.3496	-0.0371 0.0505	0.5528 0.6766 0.9276 -0.2510

Mark 25 f08sa.5 (last)