
NAG Toolbox

nag_lapack_dsbgv (f08ua)

1 Purpose

nag_lapack_dsbgv (f08ua) computes all the eigenvalues and, optionally, the eigenvectors of a real
generalized symmetric-definite banded eigenproblem, of the form

Az ¼ �Bz;

where A and B are symmetric and banded, and B is also positive definite.

2 Syntax

[aabb, bbbb, ww, zz, iinnffoo] = nag_lapack_dsbgv(jjoobbzz, uupplloo, kkaa, kkbb, aabb, bbbb, ’n’, nn)

[aabb, bbbb, ww, zz, iinnffoo] = f08ua(jjoobbzz, uupplloo, kkaa, kkbb, aabb, bbbb, ’n’, nn)

3 Description

The generalized symmetric-definite band problem

Az ¼ �Bz

is first reduced to a standard band symmetric problem

Cx ¼ �x;

where C is a symmetric band matrix, using Wilkinson's modification to Crawford's algorithm (see
Crawford (1973) and Wilkinson (1977)). The symmetric eigenvalue problem is then solved for the
eigenvalues and the eigenvectors, if required, which are then backtransformed to the eigenvectors of the
original problem.

The eigenvectors are normalized so that the matrix of eigenvectors, Z, satisfies

ZTAZ ¼ � and ZTBZ ¼ I;

where � is the diagonal matrix whose diagonal elements are the eigenvalues.
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5 Parameters

5.1 Compulsory Input Parameters

1: jobz – CHARACTER(1)

Indicates whether eigenvectors are computed.

jobz ¼ N
Only eigenvalues are computed.

jobz ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: jobz ¼ N or V .

2: uplo – CHARACTER(1)

If uplo ¼ U , the upper triangles of A and B are stored.

If uplo ¼ L , the lower triangles of A and B are stored.

Constraint: uplo ¼ U or L .

3: ka – INTEGER

If uplo ¼ U , the number of superdiagonals, ka, of the matrix A.

If uplo ¼ L , the number of subdiagonals, ka, of the matrix A.

Constraint: ka � 0.

4: kb – INTEGER

If uplo ¼ U , the number of superdiagonals, kb, of the matrix B.

If uplo ¼ L , the number of subdiagonals, kb, of the matrix B.

Constraint: ka � kb � 0.

5: abðldab; :Þ – REAL (KIND=nag_wp) array

The first dimension of the array ab must be at least kaþ 1.

The second dimension of the array ab must be at least max 1; nð Þ.
The upper or lower triangle of the n by n symmetric band matrix A.

The matrix is stored in rows 1 to ka þ 1, more precisely,

if uplo ¼ U , the elements of the upper triangle of A within the band must be stored with
element Aij in abðka þ 1þ i� j; jÞ for max 1; j� kað Þ � i � j;

if uplo ¼ L , the elements of the lower triangle of A within the band must be stored with
element Aij in abð1þ i� j; jÞ for j � i � min n; jþ kað Þ:

6: bbðldbb; :Þ – REAL (KIND=nag_wp) array

The first dimension of the array bb must be at least kbþ 1.

The second dimension of the array bb must be at least max 1; nð Þ.
The upper or lower triangle of the n by n symmetric band matrix B.

The matrix is stored in rows 1 to kb þ 1, more precisely,

if uplo ¼ U , the elements of the upper triangle of B within the band must be stored with
element Bij in bbðkb þ 1þ i� j; jÞ for max 1; j� kbð Þ � i � j;

if uplo ¼ L , the elements of the lower triangle of B within the band must be stored with
element Bij in bbð1þ i� j; jÞ for j � i � min n; jþ kbð Þ:
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5.2 Optional Input Parameters

1: n – INTEGER

Default: the second dimension of the arrays ab, bb. (An error is raised if these dimensions are
not equal.)

n, the order of the matrices A and B.

Constraint: n � 0.

5.3 Output Parameters

1: abðldab; :Þ – REAL (KIND=nag_wp) array

The first dimension of the array ab will be kaþ 1.

The second dimension of the array ab will be max 1;nð Þ.
The contents of ab are overwritten.

2: bbðldbb; :Þ – REAL (KIND=nag_wp) array

The first dimension of the array bb will be kbþ 1.

The second dimension of the array bb will be max 1; nð Þ.
The factor S from the split Cholesky factorization B ¼ STS, as returned by nag_lapack_dpbstf
(f08uf).

3: wðnÞ – REAL (KIND=nag_wp) array

The eigenvalues in ascending order.

4: zðldz; :Þ – REAL (KIND=nag_wp) array

The first dimension, ldz, of the array z will be

if jobz ¼ V , ldz ¼ max 1;nð Þ;
otherwise ldz ¼ 1.

The second dimension of the array z will be max 1;nð Þ if jobz ¼ V and 1 otherwise.

If jobz ¼ V , z contains the matrix Z of eigenvectors, with the ith column of Z holding the
eigenvector associated with wðiÞ. The eigenvectors are normalized so that ZTBZ ¼ I.

If jobz ¼ N , z is not referenced.

5: info – INTEGER

info ¼ 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

info ¼ �i

If info ¼ �i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: jobz, 2: uplo, 3: n, 4: ka, 5: kb, 6: ab, 7: ldab, 8: bb, 9: ldbb, 10: w, 11: z, 12: ldz, 13:
work, 14: info.

It is possible that info refers to a parameter that is omitted from the MATLAB interface. This
usually indicates that an error in one of the other input parameters has caused an incorrect value
to be inferred.
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info > 0

If info ¼ i and i � n, the algorithm failed to converge; i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

If info ¼ i and i > n, if info ¼ nþ i, for 1 � i � n, then nag_lapack_dpbstf (f08uf) returned
info ¼ i: B is not positive definite. The factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and
vectors may be large, although when the diagonal elements of B differ widely in magnitude the
eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section
4.10 of Anderson et al. (1999) for details of the error bounds.

8 Further Comments

The total number of floating-point operations is proportional to n3 if jobz ¼ V and, assuming that
n � ka, is approximately proportional to n2ka otherwise.

The complex analogue of this function is nag_lapack_zhbgv (f08un).

9 Example

This example finds all the eigenvalues of the generalized band symmetric eigenproblem Az ¼ �Bz,
where

A ¼
0:24 0:39 0:42 0
0:39 �0:11 0:79 0:63
0:42 0:79 �0:25 0:48
0 0:63 0:48 �0:03

0
B@

1
CA and B ¼

2:07 0:95 0 0
0:95 1:69 �0:29 0
0 �0:29 0:65 �0:33
0 0 �0:33 1:17

0
B@

1
CA:

9.1 Program Text

function f08ua_example

fprintf(’f08ua example results\n\n’);

% Symmetric banded matrices A and B stored in symmetric banded format
uplo = ’U’;
ka = nag_int(2);
ab = [0, 0, 0.42, 0.63;

0, 0.39, 0.79, 0.48;
0.24, -0.11, -0.25, -0.03];

kb = nag_int(1);
bb = [0, 0.95, -0.29, -0.33;

2.07, 1.69, 0.65, 1.17];

% Eigenvalues only of Ax = lambda Bx
jobz = ’No vectors’;
[~, ~, w, ~, info] = f08ua( ...

jobz, uplo, ka, kb, ab, bb);

disp(’Eigenvalues’);
disp(w’);

9.2 Program Results

f08ua example results

Eigenvalues
-0.8305 -0.6401 0.0992 1.8525
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