# NAG Toolbox <br> nag_lapack_dsbgst (f08ue) 

## 1 Purpose

nag_lapack_dsbgst (f08ue) reduces a real symmetric-definite generalized eigenproblem $A z=\lambda B z$ to the standard form $C y=\lambda y$, where $A$ and $B$ are band matrices, $A$ is a real symmetric matrix, and $B$ has been factorized by nag_lapack_dpbstf (f08uf).

## 2 Syntax

```
[ab, x, info] = nag_lapack_dsbgst(vect, uplo, ka, kb, ab, bb, 'n', n)
[ab, x, info] = f08ue(vect, uplo, ka, kb, ab, bb, 'n', n)
```


## 3 Description

To reduce the real symmetric-definite generalized eigenproblem $A z=\lambda B z$ to the standard form $C y=\lambda y$, where $A, B$ and $C$ are banded, nag_lapack_dsbgst (f08ue) must be preceded by a call to nag_lapack_dpbstf (f08uf) which computes the split Cholesky factorization of the positive definite matrix $B: \quad B=S^{\mathrm{T}} S$. The split Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to be approximately halved.

This function overwrites $A$ with $C=X^{\mathrm{T}} A X$, where $X=S^{-1} Q$ and $Q$ is a orthogonal matrix chosen (implicitly) to preserve the bandwidth of $A$. The function also has an option to allow the accumulation of $X$, and then, if $z$ is an eigenvector of $C, X z$ is an eigenvector of the original system.

## 4 References

Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16 41-44

Kaufman L (1984) Banded eigenvalue solvers on vector machines ACM Trans. Math. Software $1073-$ 86

## 5 Parameters

### 5.1 Compulsory Input Parameters

1: vect - CHARACTER(1)
Indicates whether $X$ is to be returned.

$$
\text { vect }=\text { ' } \mathrm{N}^{\prime}
$$

$X$ is not returned.
vect $=$ ' $\mathrm{V}^{\prime}$
$X$ is returned.
Constraint: vect $=$ ' N ' or ' V '.
2: uplo - CHARACTER(1)
Indicates whether the upper or lower triangular part of $A$ is stored.
uplo = 'U'
The upper triangular part of $A$ is stored.
uplo $=$ 'L'
The lower triangular part of $A$ is stored.
Constraint: uplo $=$ 'U' or 'L'.
3: ka - INTEGER
If uplo $=$ ' U ', the number of superdiagonals, $k_{a}$, of the matrix $A$.
If uplo $=$ 'L', the number of subdiagonals, $k_{a}$, of the matrix $A$.
Constraint: ka $\geq 0$.
4: kb - INTEGER
If uplo $=$ ' U ', the number of superdiagonals, $k_{b}$, of the matrix $B$.
If uplo $=$ ' L ', the number of subdiagonals, $k_{b}$, of the matrix $B$.
Constraint: $\mathbf{k a} \geq \mathbf{k b} \geq 0$.
5: $\quad \mathbf{a b}(l d a b,:)-$ REAL (KIND=nag_wp) array
The first dimension of the array $\mathbf{a b}$ must be at least ka +1 .
The second dimension of the array $\mathbf{a b}$ must be at least $\max (1, \mathbf{n})$.
The upper or lower triangle of the $n$ by $n$ symmetric band matrix $A$.
The matrix is stored in rows 1 to $k_{a}+1$, more precisely,
if uplo $=$ ' U ', the elements of the upper triangle of $A$ within the band must be stored with element $A_{i j}$ in $\mathbf{a b}\left(k_{a}+1+i-j, j\right)$ for $\max \left(1, j-k_{a}\right) \leq i \leq j$;
if uplo $=$ 'L', the elements of the lower triangle of $A$ within the band must be stored with element $A_{i j}$ in $\mathbf{a b}(1+i-j, j)$ for $j \leq i \leq \min \left(n, j+k_{a}\right)$.

6: $\quad \mathbf{b b}(l d b b,:)-$ REAL (KIND=nag_wp) array
The first dimension of the array $\mathbf{b b}$ must be at least $\mathbf{k b}+1$.
The second dimension of the array $\mathbf{b b}$ must be at least $\max (1, \mathbf{n})$.
The banded split Cholesky factor of $B$ as specified by uplo, $\mathbf{n}$ and $\mathbf{k b}$ and returned by nag_lapack_dpbstf (f08uf).

### 5.2 Optional Input Parameters

1: $\quad \mathbf{n}$ - INTEGER
Default: the second dimension of the arrays $\mathbf{a b}, \mathbf{b b}$.
$n$, the order of the matrices $A$ and $B$.
Constraint: $\mathbf{n} \geq 0$.

### 5.3 Output Parameters

1: $\quad \mathbf{a b}(l d a b,:)-$ REAL (KIND=nag_wp) array
The first dimension of the array $\mathbf{a b}$ will be $\mathbf{k a}+1$.
The second dimension of the array $\mathbf{a b}$ will be $\max (1, \mathbf{n})$.
The upper or lower triangle of ab stores the corresponding upper or lower triangle of $C$ as specified by uplo.

2: $\quad \mathbf{x}(l d x,:)-$ REAL (KIND=nag_wp) array
The first dimension, $l d x$, of the array $\mathbf{x}$ will be

$$
\begin{aligned}
& \text { if vect }={ }^{\prime} \mathrm{V}^{\prime}, l d x=\max (1, \mathbf{n}) \text {; } \\
& \text { if vect }=\text { 'N', } l d x=1 .
\end{aligned}
$$

The second dimension of the array $\mathbf{x}$ will be $\max (1, \mathbf{n})$ if vect $={ }^{\prime} V^{\prime}$ and at least 1 if vect $=$ ' $N$ '.
The $n$ by $n$ matrix $X=S^{-1} Q$, if vect $=$ ' V '.
If vect $=$ ' N ', $\mathbf{x}$ is not referenced.
3: info - INTEGER
info $=0$ unless the function detects an error (see Section 6).

## 6 Error Indicators and Warnings

$\boldsymbol{\operatorname { i n f }}=-i$
If info $=-i$, parameter $i$ had an illegal value on entry. The parameters are numbered as follows:
1: vect, 2 : uplo, 3: n, 4: ka, 5: kb, 6: ab, 7: ldab, 8: bb, 9: ldbb, 10: x, 11: ldx, 12: work, 13 : info.

It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

## 7 Accuracy

Forming the reduced matrix $C$ is a stable procedure. However it involves implicit multiplication by $B^{-1}$. When nag_lapack_dsbgst (f08ue) is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if $B$ is ill-conditioned with respect to inversion.

## 8 Further Comments

The total number of floating-point operations is approximately $6 n^{2} k_{B}$, when vect $=$ ' N ', assuming $n \gg k_{A}, k_{B}$; there are an additional $(3 / 2) n^{3}\left(k_{B} / k_{A}\right)$ operations when vect $=$ ' V '.
The complex analogue of this function is nag_lapack_zhbgst (f08us).

## 9 Example

This example computes all the eigenvalues of $A z=\lambda B z$, where

$$
A=\left(\begin{array}{rrrr}
0.24 & 0.39 & 0.42 & 0.00 \\
0.39 & -0.11 & 0.79 & 0.63 \\
0.42 & 0.79 & -0.25 & 0.48 \\
0.00 & 0.63 & 0.48 & -0.03
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrrr}
2.07 & 0.95 & 0.00 & 0.00 \\
0.95 & 1.69 & -0.29 & 0.00 \\
0.00 & -0.29 & 0.65 & -0.33 \\
0.00 & 0.00 & -0.33 & 1.17
\end{array}\right) .
$$

Here $A$ is symmetric, $B$ is symmetric positive definite, and $A$ and $B$ are treated as band matrices. $B$ must first be factorized by nag_lapack_dpbstf (f08uf). The program calls nag_lapack_dsbgst (f08ue) to reduce the problem to the standard form $C y=\lambda y$, then nag_lapack_dsbtrd (f08he) to reduce $C$ to tridiagonal form, and nag_lapack_dsterf (f08jf) to compute the eigenvalues.

### 9.1 Program Text

```
    function fO8ue_example
fprintf('f08ue example results\n\n');
% Sove Az = lambda Bz
% A and B are the symmetric banded positive definite matrices:
n = 4;
% A has 2 off-diagonals
ka = nag_int(2);
a = [ 0.24, 0.39, 0.42, 0.00;
    0.39, -0.11, 0.79, 0.63;
    0.42, 0.79, -0.25, 0.48;
    0.00, 0.63, 0.48, -0.03];
% B has 1 off-diagonal
kb = nag_int(1);
b = [ 2.07 0.95 0.00 0.00;
    0.95 1.69 -0.29 0.00;
    0.00 -0.29 0.65 -0.33;
    0.00 0.00 -0.33 1.17];
% Convert to general banded format ...
[~, ab, ifail] = f01zc( ...
    'P', ka, ka, a, zeros(ka+ka+1,n));
[~, bb, ifail] = f01zc( ...
    'P', kb, kb, b, zeros(kb+kb+1,n)) ;
% ... and chop to give 'Upper' symmetric banded format
ab = ab(1:ka+1,1:n);
bb = bb(1:kb+1,1:n);
% Factorize B
uplo = 'Upper';
[ub, info] = f08uf( ...
    uplo, kb, bb);
% Reduce problem to standard form Cy = lambda*y
vect = 'N';
[cb, x, info] = f08ue( ...
    vect, uplo, ka, kb, ab, ub);
% Find eigenvalues lambda
jobz = 'No Vectors';
[~, w, ~, info] = f08ha( ...
    jobz, uplo, ka, cb);
disp('Eigenvalues:');
disp(w');
```


### 9.2 Program Results

```
    f08ue example results
```

Eigenvalues:
$\begin{array}{llll}-0.8305 & -0.6401 & 0.0992 & 1.8525\end{array}$

