NAG Toolbox nag_contab_binary (g11sa)

1 Purpose

nag_contab_binary (g11sa) fits a latent variable model (with a single factor) to data consisting of a set of measurements on individuals in the form of binary-valued sequences (generally referred to as score patterns). Various measures of goodness-of-fit are calculated along with the factor (theta) scores.

2 Syntax

```
[x, irl, a, c, niter, alpha, pigam, cm, g, expp, obs, exf, y, iob, rlogl, chi,
idf, siglev, ifail] = nag_contab_binary(n, gprob, x, irl, a, c, cgetol, chisqr,
'ip', ip, 'ns', ns, 'iprint', iprint, 'maxit', maxit)
[x, irl, a, c, niter, alpha, pigam, cm, g, expp, obs, exf, y, iob, rlogl, chi,
idf, siglev, ifail] = gllsa(n, gprob, x, irl, a, c, cgetol, chisqr, 'ip', ip,
'ns', ns, 'iprint', iprint, 'maxit', maxit)
```


3 Description

Given a set of p dichotomous variables $\tilde{x}=\left(x_{1}, x_{2}, \ldots, x_{p}\right)^{\prime}$, where ' denotes vector or matrix transpose, the objective is to investigate whether the association between them can be adequately explained by a latent variable model of the form (see Bartholomew (1980) and Bartholomew (1987))

$$
\begin{equation*}
G\left\{\pi_{i}(\theta)\right\}=\alpha_{i 0}+\alpha_{i 1} \theta \tag{1}
\end{equation*}
$$

The x_{i} are called item responses and take the value 0 or $1 . \theta$ denotes the latent variable assumed to have a standard Normal distribution over a population of individuals to be tested on p items. Call $\pi_{i}(\theta)=P\left(x_{i}=1 \mid \theta\right)$ the item response function: it represents the probability that an individual with latent ability θ will produce a positive response (1) to item $i . \alpha_{i 0}$ and $\alpha_{i 1}$ are item parameters which can assume any real values. The set of parameters, $\alpha_{i 1}$, for $i=1,2, \ldots, p$, being coefficients of the unobserved variable θ, can be interpreted as 'factor loadings'.
G is a function selected by you as either Φ^{-1} or logit, mapping the interval $(0,1)$ onto the whole real line. Data from a random sample of n individuals takes the form of the matrices X and R defined below:

$$
X_{s \times p}=\left[\begin{array}{llll}
x_{11} & x_{12} & \ldots & x_{1 p} \\
x_{21} & x_{22} & \ldots & x_{2 p} \\
\vdots & \vdots & & \vdots \\
x_{s 1} & x_{s 2} & \ldots & x_{s p}
\end{array}\right]=\left[\begin{array}{l}
\tilde{x}_{1} \\
\tilde{x}_{2} \\
\vdots \\
\tilde{x}_{s}
\end{array}\right], \quad R_{s \times 1}=\left[\begin{array}{l}
r_{1} \\
r_{2} \\
\vdots \\
r_{s}
\end{array}\right]
$$

where $\tilde{x}_{l}=\left(x_{l 1}, x_{l 2}, \ldots, x_{l p}\right)$ denotes the l th score pattern in the sample, r_{l} the frequency with which \tilde{x}_{l} occurs and s the number of different score patterns observed. (Thus $\sum_{l=1}^{s} r_{l}=n$). It can be shown that the log-likelihood function is proportional to

$$
\sum_{l=1}^{s} r_{l} \log P_{l}
$$

where

$$
\begin{equation*}
P_{l}=P\left(\tilde{x}=\tilde{x}_{l}\right)=\int_{-\infty}^{\infty} P\left(\tilde{x}=\tilde{x}_{l} \mid \theta\right) \phi(\theta) d \theta \tag{2}
\end{equation*}
$$

($\phi(\theta)$ being the probability density function of a standard Normal random variable).
P_{l} denotes the unconditional probability of observing score pattern \tilde{x}_{l}. The integral in (2) is approximated using Gauss-Hermite quadrature. If we take $G(z)=\operatorname{logit} z=\log \left(\frac{z}{1-z}\right)$ in (1) and reparameterise as follows,

$$
\begin{aligned}
\alpha_{i} & =\alpha_{i 1} \\
\pi_{i} & =\operatorname{logit}^{-1} \alpha_{i 0}
\end{aligned}
$$

then (1) reduces to the logit model (see Bartholomew (1980))

$$
\pi_{i}(\theta)=\frac{\pi_{i}}{\pi_{i}+\left(1-\pi_{i}\right) \exp \left(-\alpha_{i} \theta\right)}
$$

If we take $G(z)=\Phi^{-1}(z)$ (where Φ is the cumulative distribution function of a standard Normal random variable) and reparameterise as follows,

$$
\begin{aligned}
\alpha_{i} & =\frac{\alpha_{i 1}}{\sqrt{\left(1+\alpha_{i 1}^{2}\right)}} \\
\gamma_{i} & =\frac{-\alpha_{i 0}}{\sqrt{\left(1+\alpha_{i 1}^{2}\right)}}
\end{aligned}
$$

then (1) reduces to the probit model (see Bock and Aitkin (1981))

$$
\pi_{i}(\theta)=\phi\left(\frac{\alpha_{i} \theta-\gamma_{i}}{\sqrt{\left(1-\alpha_{i}^{2}\right)}}\right)
$$

An E-M algorithm (see Bock and Aitkin (1981)) is used to maximize the log-likelihood function. The number of quadrature points used is set initially to 10 and once convergence is attained increased to 20 .
The theta score of an individual responding in score pattern \tilde{x}_{l} is computed as the posterior mean, i.e., $E\left(\theta \mid \tilde{x}_{l}\right)$. For the logit model the component score $X_{l}=\sum_{j=1}^{p} \alpha_{j} x_{l j}$ is also calculated. (Note that in calculating the theta scores and measures of goodness-of-fit nag_contab_binary (g11sa) automatically reverses the coding on item j if $\alpha_{j}<0$; it is assumed in the model that a response at the one level is showing a higher measure of latent ability than a response at the zero level.)
The frequency distribution of score patterns is required as input data. If your data is in the form of individual score patterns (uncounted), then nag_contab_binary_service (g11sb) may be used to calculate the frequency distribution.

4 References

Bartholomew D J (1980) Factor analysis for categorical data (with Discussion) J. Roy. Statist. Soc. Ser. B 42 293-321

Bartholomew D J (1987) Latent Variable Models and Factor Analysis Griffin
Bock R D and Aitkin M (1981) Marginal maximum likelihood estimation of item parameters: Application of an E-M algorithm Psychometrika 46 443-459

5 Parameters

5.1 Compulsory Input Parameters

1: $\quad \mathbf{n}$ - INTEGER
n, the number of individuals in the sample.
Constraint: $\mathbf{n} \geq 7$.

2: gprob - LOGICAL
Must be set equal to true if $G(z)=\Phi^{-1}(z)$ and false if $G(z)=\operatorname{logit} z$.
3: $\quad \mathbf{x}(l d x, \mathbf{i p})$ - LOGICAL array
$l d x$, the first dimension of the array, must satisfy the constraint $l d x \geq \mathbf{n s}$.
The first s rows of \mathbf{x} must contain the s different score patterns. The l th row of \mathbf{x} must contain the l th score pattern with $\mathbf{x}(l, j)$ set equal to true if $x_{l j}=1$ and false if $x_{l j}=0$. All rows of \mathbf{x} must be distinct.

4: $\quad \mathbf{i r l}(\mathbf{n s})$ - INTEGER array
The i th component of irl must be set equal to the frequency with which the i th row of \mathbf{x} occurs.
Constraints:

$$
\begin{aligned}
& \operatorname{irl}(i) \geq 0, \text { for } i=1,2, \ldots, s \\
& \sum_{i=1}^{s} \operatorname{irl}(i)=n .
\end{aligned}
$$

5: $\quad \mathbf{a}(\mathbf{i p})$ - REAL (KIND=nag_wp) array
$\mathbf{a}(j)$ must be set equal to an initial estimate of $\alpha_{j 1}$. In order to avoid divergence problems with the E-M algorithm you are strongly advised to set all the a(j) to $\mathbf{0 . 5}$.

6: $\quad \mathbf{c}(\mathbf{i p})-$ REAL (KIND=nag_wp) array
$\mathbf{c}(j)$ must be set equal to an initial estimate of $\alpha_{j 0}$. In order to avoid divergence problems with the $E-M$ algorithm you are strongly advised to set all the $\mathbf{c}(\boldsymbol{j})$ to $\mathbf{0 . 0}$.
cgetol - REAL (KIND=nag_wp)
The accuracy to which the solution is required.
If cgetol is set to 10^{-l} and on exit ifail $=0$ or 7 , then all elements of the gradient vector will be smaller than 10^{-l} in absolute value. For most practical purposes the value 10^{-4} should suffice. You should be wary of setting cgetol too small since the convergence criterion may then have become too strict for the machine to handle.

If cgetol has been set to a value which is less than the square root of the machine precision, ϵ, then nag_contab_binary (g11sa) will use the value $\sqrt{\epsilon}$ instead.

8: \quad chisqr - LOGICAL
If chisqr is set equal to true, then a likelihood ratio statistic will be calculated (see chi).
If chisqr is set equal to false, no such statistic will be calculated.

5.2 Optional Input Parameters

1: $\quad \mathbf{i p}$ - INTEGER
Default: the dimension of the arrays \mathbf{a}, \mathbf{c} and the second dimension of the array \mathbf{x}. (An error is raised if these dimensions are not equal.)
p, the number of dichotomous variables.
Constraint: $\mathbf{i p} \geq 3$.

2: ns - INTEGER
Default: the dimension of the array irl and the first dimension of the array \mathbf{x}. (An error is raised if these dimensions are not equal.)
ns must be set equal to the number of different score patterns in the sample, s.
Constraint: $2 \times \mathbf{i p}<\mathbf{n s} \leq \min \left(2^{\text {ip }}, \mathbf{n}\right)$.
3: iprint - INTEGER
Suggested value: $\mathbf{i p r i n t}=1$.
Default: 1
The frequency with which the maximum likelihood search function is to be monitored.
iprint >0
The search is monitored once every iprint iterations, and when the number of quadrature points is increased, and again at the final solution point.
$\boldsymbol{\text { print }}=0$
The search is monitored once at the final point.
iprint <0
The search is not monitored at all.
iprint should normally be set to a small positive number.
4: maxit - INTEGER
Suggested value: maxit $=1000$.
Default: 1000
The maximum number of iterations to be made in the maximum likelihood search. There will be an error exit (see Section 6) if the search function has not converged in maxit iterations.
Constraint: maxit ≥ 1.

5.3 Output Parameters

1: $\quad \mathbf{x}(l d x, \mathbf{i p})$ - LOGICAL array
Given a valid parameter set then the first s rows of \mathbf{x} still contain the s different score patterns. However, the following points should be noted:
(i) If the estimated factor loading for the j th item is negative then that item is re-coded, i.e., 0 s and 1s (or true and false) in the j th column of \mathbf{x} are interchanged.
(ii) The rows of \mathbf{x} will be reordered so that the theta scores corresponding to rows of \mathbf{x} are in increasing order of magnitude.

2: $\quad \operatorname{irl}(\mathbf{n s})$ - INTEGER array
Given a valid parameter set then the first s components of irl are reordered as are the rows of \mathbf{x}.
$\mathbf{a}(\mathbf{i p})$ - REAL (KIND=nag_wp) array
$\mathbf{a}(j)$ contains the latest estimate of $\alpha_{j 1}$, for $j=1,2, \ldots, p$. (Because of possible recoding all elements of a will be positive.)
$\mathbf{c}(\mathbf{i p})$ - REAL (KIND=nag_wp) array
$\mathbf{c}(j)$ contains the latest estimate of $\alpha_{j 0}$, for $j=1,2, \ldots, p$.
5: niter - INTEGER
Given a valid parameter set then niter contains the number of iterations performed by the maximum likelihood search function.

6: \quad alpha(ip) - REAL (KIND=nag_wp) array
Given a valid parameter set then $\operatorname{alpha}(j)$ contains the latest estimate of α_{j}. (Because of possible recoding all elements of alpha will be positive.)

7: $\quad \operatorname{pigam}(\mathbf{i p})-$ REAL (KIND=nag_wp) array
Given a valid parameter set then $\operatorname{pigam}(j)$ contains the latest estimate of either π_{j} if gprob $=$ false (logit model) or γ_{j} if gprob $=$ true (probit model).

8: $\quad \mathbf{c m}(l d c m, \mathbf{2} \times \mathbf{i p})-$ REAL $(\mathrm{KIND}=$ nag_wp $)$ array
Given a valid parameter set then the strict lower triangle of $\mathbf{c m}$ contains the correlation matrix of the parameter estimates held in alpha and pigam on exit. The diagonal elements of cm contain the standard errors. Thus:

```
cm(2\timesi-1,2\timesi-1) = standard error (alpha}(i)
cm(2 < i,2 <i) = standard error (pigam}(i)
cm(2 < i,2 < i-1) = correlation (pigam(i), alpha(i)),
```

for $i=1,2, \ldots, p$;

$$
\begin{array}{lll}
\mathbf{c m}(2 \times i-1,2 \times j-1) & =\text { correlation }(\operatorname{alpha}(i), \operatorname{alpha}(j)) \\
\mathbf{c m}(2 \times i, 2 \times j) & =\text { correlation }(\operatorname{pigam}(i), \text { pigam }(j)) \\
\mathbf{c m}(2 \times i-1,2 \times j) & =\text { correlation }(\operatorname{alpha}(i), \text { pigam }(j)) \\
\mathbf{c m}(2 \times i, 2 \times j-1) & =\text { correlation }(\operatorname{alpha}(j), \operatorname{pigam}(i)),
\end{array}
$$

for $j=1,2, \ldots, i-1$.
If the second derivative matrix cannot be computed then all the elements of $\mathbf{c m}$ are returned as zero.
$\mathbf{g}(\mathbf{2} \times \mathbf{i p})-$ REAL (KIND=nag_wp) array
Given a valid parameter set then \mathbf{g} contains the estimated gradient vector corresponding to the final point held in the arrays alpha and pigam. $\mathbf{g}(2 \times j-1)$ contains the derivative of the loglikelihood with respect to alpha (j), for $j=1,2, \ldots, p . \mathbf{g}(2 \times j)$ contains the derivative of the loglikelihood with respect to $\operatorname{pigam}(j)$, for $j=1,2, \ldots, p$.

10: $\quad \operatorname{expp}(l d \operatorname{expp}, \mathbf{i p})-$ REAL (KIND=nag_wp) array
Given a valid parameter set then $\operatorname{expp}(i, j)$ contains the expected percentage of individuals in the sample who respond positively to items i and $j(j \leq i)$, corresponding to the final point held in the arrays alpha and pigam.
$\mathbf{o b s}(l d \operatorname{expp}, \mathbf{i p})$ - REAL (KIND=nag_wp) array
Given a valid parameter set then $\mathbf{o b s}(i, j)$ contains the observed percentage of individuals in the sample who responded positively to items i and $j(j \leq i)$.
exf(ns) - REAL (KIND=nag_wp) array
Given a valid parameter set then $\operatorname{exf}(l)$ contains the expected frequency of the l th score pattern (l th row of \mathbf{x}), corresponding to the final point held in the arrays alpha and pigam.

13: $\mathbf{y}(\mathbf{n s})$ - REAL (KIND=nag_wp) array
Given a valid parameter set then $\mathbf{y}(l)$ contains the estimated theta score corresponding to the l th row of \mathbf{x}, for the final point held in the arrays alpha and pigam.

14: $\quad \mathbf{i o b}(\mathbf{n s})$ - INTEGER array
Given a valid parameter set then $\mathbf{i o b}(l)$ contains the number of items in the l th row of \mathbf{x} for which the response was positive (true).
rlogl - REAL (KIND=nag_wp)
Given a valid parameter set then rlogl contains the value of the log-likelihood kernel corresponding to the final point held in the arrays alpha and pigam, namely

$$
\sum_{l=1}^{s} \operatorname{irl}(l) \times \log (\mathbf{e x f}(l) / n) .
$$

16: \quad chi - REAL (KIND=nag_wp)
If chisqr was set equal to true on entry, then given a valid parameter set, chi will contain the value of the likelihood ratio statistic corresponding to the final parameter estimates held in the arrays alpha and pigam, namely

$$
2 \times \sum_{l=1}^{s} \operatorname{irl}(l) \times \log (\mathbf{e x f}(l) / \mathbf{i r l}(l))
$$

The summation is over those elements of irl which are positive. If $\operatorname{exf}(l)$ is less than 5.0 , then adjacent score patterns are pooled (the score patterns in \mathbf{x} being first put in order of increasing theta score).

If chisqr has been set equal to false, then chi is not used.
17: idf - INTEGER
If chisqr was set equal to true on entry, then given a valid parameter set, idf will contain the degrees of freedom associated with the likelihood ratio statistic, chi.

$$
\begin{array}{ll}
\mathbf{i d f}=s_{0}-2 \times p & \text { if } s_{0}<2^{p} ; \\
\mathbf{i d f}=s_{0}-2 \times p-1 & \text { if } s_{0}=2^{p}
\end{array}
$$

where s_{0} denotes the number of terms summed to calculate chi $\left(s_{0}=s\right.$ only if there is no pooling).

If chisqr has been set equal to false, then idf is not used.

18: siglev - REAL (KIND=nag_wp)
If chisqr was set equal to true on entry, then given a valid parameter set, siglev will contain the significance level of chi based on idf degrees of freedom. If idf is zero or negative then siglev is set to zero.

If chisqr was set equal to false, then siglev is not used.
19: ifail - INTEGER
ifail $=0$ unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Note: nag_contab_binary (g11sa) may return useful information for one or more of the following detected errors or warnings.

Errors or warnings detected by the function:

$$
\text { ifail }=1
$$

On entry, ip <3,
or $\quad \mathbf{n}<7$,
or $\quad \mathbf{n s} \leq 2 \times \mathbf{i p}$,
or $\mathbf{n s}>\mathbf{n}$,
or $\quad \mathbf{n s}>2^{\text {ip }}$,
or two or more rows of \mathbf{x} are identical,
or $\quad l d x<\mathbf{n s}$,
or $\quad \sum_{l=1}^{\mathbf{n s}} \mathbf{i r l}(l) \neq \mathbf{n}$,
or \quad at least one $\operatorname{irl}(l)<0$, for $l=1,2, \ldots, \mathbf{n s}$,
or maxit <1,
or \quad ishow <0,
or \quad ishow >7,
or $\quad l d c m<\mathbf{i p}+\mathbf{i p}$,
or $\quad l d e x p p<\mathbf{i p}$,
or $\quad l w<4 \times \mathbf{i p} \times(\mathbf{i p}+16)$.
ifail $=2$
For at least one of the ip items the responses are all at the same level. To proceed, you must delete this item from the dataset.

ifail $=3$

There have been maxit iterations of the maximum likelihood search function. If steady increases in the log-likelihood kernel were monitored up to the point where this exit occurred, then the exit probably occurred simply because maxit was set too small, so the calculations should be restarted from the final point held in a and \mathbf{c}. This type of exit may also indicate that there is no maximum to the likelihood surface.

ifail $=4$

One of the elements of a has exceeded 10.0 in absolute value (see Section 9.3). If steady increases in the log-likelihood kernel were monitored up to the point where this exit occurred then this exit may indicate that there is no maximum to the likelihood surface. You are advised to restart the calculations from a different point to see whether the E-M algorithm moves off in the same direction.

ifail $=5$

This indicates a failure in nag_matop_real_symm_posdef_inv (f01ab) which is used to invert the second derivative matrix for calculating the variance-covariance matrix of parameter estimates. It was also found that maxit iterations had been performed (see ifail $=3$). The elements of $\mathbf{c m}$ will then have been set to zero on exit. You are advised to restart the calculations with a larger value for maxit.

ifail $=6$

This indicates a failure in nag_matop_real_symm_posdef_inv (f01ab) which is used to invert the second derivative matrix for calculating the variance-covariance matrix of parameter estimates. It was also found that one of the elements of a had exceeded 10.0 in absolute value (see ifail $=4$). The elements of $\mathbf{c m}$ will have then been set to zero on exit. You are advised to restart the calculations from a different point to see whether the E-M algorithm moves off in the same direction.

ifail $=7$ (warning)

If chisqr was set equal to true on entry, so that a likelihood ratio statistic was calculated, then ifail $=7$ merely indicates that the value of idf on exit is ≤ 0, i.e., the χ^{2} statistic is meaningless. In this case siglev is returned as zero. All other output information should be correct, i.e., can be treated as if ifail $=0$ on exit.

$$
\text { ifail }=-99
$$

An unexpected error has been triggered by this routine. Please contact NAG.

$$
\text { ifail }=-399
$$

Your licence key may have expired or may not have been installed correctly.

ifail $=-999$

Dynamic memory allocation failed.

7 Accuracy

On exit from nag_contab_binary (g11sa) if ifail $=0$ or 7 then the following condition will be satisfied:

$$
\max _{1 \leq i \leq 2 \times p}\{|\mathbf{g}(i)|\}<\text { cgetol. }
$$

If ifail $=3$ or 5 on exit (i.e., maxit iterations have been performed but the above condition does not hold), then the elements in a, c, alpha and pigam may still be good approximations to the maximum likelihood estimates. You are advised to inspect the elements of \mathbf{g} to see whether this is confirmed.

8 Further Comments

8.1 Timing

The number of iterations required in the maximum likelihood search depends upon the number of observed variables, p, and the distance of the starting point you supplied from the solution. The number of multiplications and divisions performed in an iteration is proportional to p.

8.2 Initial Estimates

You are strongly advised to use the recommended starting values for the elements of a and c. Divergence may result from values you supplied even if they are very close to the solution. Divergence may also occur when an item has nearly all its responses at one level.

8.3 Heywood Cases

As in normal factor analysis, Heywood cases can often occur, particularly when p is small and n not very big. To overcome this difficulty the maximum likelihood search function is terminated when the absolute value of one of the $\alpha_{j 1}$ exceeds 10.0 . You have the option of deciding whether to exit from nag_contab_binary (g11sa) (by setting ifail $=0$ on entry) or to permit nag_contab_binary (g11sa) to proceed onwards as if it had exited normally from the maximum likelihood search function (setting ifail $=-1$ on entry). The elements in a, c, alpha and pigam may still be good approximations to the maximum likelihood estimates. You are advised to inspect the elements \mathbf{g} to see whether this is confirmed.

8.4 Goodness of Fit Statistic

When n is not very large compared to s a goodness-of-fit statistic should not be calculated as many of the expected frequencies will then be less than 5.

8.5 First and Second Order Margins

The observed and expected percentages of sample members responding to individual and pairs of items held in the arrays obs and expp on exit can be converted to observed and expected numbers by multiplying all elements of these two arrays by $n / 100.0$.

9 Example

A program to fit the logit latent variable model to the following data:

Index	Score Pattern	Observed Frequency
1	0000	154
2	1000	11
3	0001	42
4	0100	49
5	1001	2
6	1100	10
7	0101	27
8	0010	84
9	1101	10
10	1010	25
11	0011	75
12	0110	129
13	1011	30
14	1110	50
15	0111	181
16	1111	121

Total		1000

9.1 Program Text

```
    function g11sa_example
fprintf('g11sa example results\n\n');
n = nag_int(1000);
x = [false, false, false, false;
        true, false, false, false;
        false, false, false, true;
        false, true, false, false;
        true, false, false, true;
        true, true, false, false;
        false, true, false, true;
        false, false, true, false;
        true, true, false, true;
        true, false, true, false;
        false, false, true, true;
        false, true, true, false;
        true, false, true, true;
        true, true, true, false;
        false, true, true, true;
        true, true, true, true];
irl = [nag_int(154); 11; 42; 49;
            2; 10; 27; 84;
            10; 25; 75; 129;
% Initial values
a = [0.5; 0.5; 0.5; 0.5];
c = [0; 0; 0; 0];
% Parameters
gprob = false;
cgetol = 0.0001;
```

```
chisqr = true;
iprint = nag_int(-1);
% Fit a latent variable model
[x, irl, a, c, niter, alpha, pigam, cm, g, expp, obs, exf, y, ...
    iob, rlogl, chi, idf, siglev, ifail] = ...
    gllsa( ...
            n, gprob, x, irl, a, c, cgetol, chisqr, 'iprint', iprint);
% Display results
fprintf('Log likelihood kernel on exit = %14.4e\n\n', rlogl);
fprintf('Maximum likelihood estimates of item parameters are as follows\n');
fprintf('--------------------------------------------------------------\n\n');
fprintf('%8s%12s%11s%16s%10s%13s\n\n', 'item j', 'alpha(j)', 's.e.', ...
            'alpha(j,0)', 'pi(j)', 's.e.');
ivar = [1:numel(a)]';
se = diag(cm);
results = [ivar alpha se(1:2:end) c pigam se(2:2:end)];
fprintf('%5d%13.3f%13.3f%13.3f%13.3f%13.3f\n',results');
fprintf('\n\n');
mtitle = 'Expected percentage of cases producing positive responses';
[ifail] = x04ca( ...
                            'Lower', 'Non-unit', expp, mtitle);
fprintf('\n');
mtitle = 'Observed percentage of cases producing positive responses';
[ifail] = x04ca( ...
    'Lower', 'Non-unit', obs, mtitle);
fprintf('\n\n');
fprintf(', Observed Expected Theta Component Raw Score\n');
fprintf(' frequency frequency score score score pattern\n\n');
cs = double(x)*alpha;
results = [ double(irl) exf y cs double(iob) double(x)];
fprintf('%7d%13.3f%8.3f%10.3f%8d %1d%1d%1d%1d\n',results');
fprintf('--------- ---------\n');
fprintf('%7d%13.3f\n\n',n,n);
fprintf('Likelihood ratio goodness of fit statistic = %10.3f\n', chi);
fprintf(' Significance level = %10.3f\n', siglev);
fprintf('(Based on %4d degrees of freedom)\n',idf)
```


9.2 Program Results

g11sa example results
Log likelihood kernel on exit $=\quad-2.4039 \mathrm{e}+03$
Maximum likelihood estimates of item parameters are as follows

item j alpha(j)	s.e.	alpha(j,0)	pi(j)	s.e.	
1	1.045	0.148	-1.276	0.218	0.017
2	1.409	0.179	0.424	0.604	0.022
3	2.659	0.525	1.615	0.834	0.036
4	1.122	0.140	-0.062	0.485	0.020

Expected percentage of cases producing positive responses

1	2	3	4
25.8963			
19.0888	57.6547		
22.4987	47.9571	69.4214	
16.4381	33.8672	40.5658	48.7712

Observed percentage of cases producing positive responses
$\begin{array}{lllll}1 & 2 & 3\end{array}$
$1 \quad 25.9000$

