G13 — Time Series Analysis g13dn

NAG Toolbox

nag tsa multi_corrmat partlag (g13dn)

1 Purpose

nag tsa multi corrmat partlag (gl3dn) calculates the sample partial lag correlation matrices of a
multivariate time series. A set of y’-statistics and their significance levels are also returned. A call to
nag tsa_multi corrmat_cross (g13dm) is usually made prior to calling this function in order to calculate
the sample cross-correlation matrices.

2 Syntax

[maxlag, parlag, x, pvalue, ifail] = nag_tsa_multi_corrmat_partlag(n, m, r0, r,
Ikl, k)

[maxlag, parlag, x, pvalue, ifail] = gl3dn(n, m, r0, r, 'k’, k)

3  Description

Let W; = (wit, way, - - - ,wkt)T, for t =1,2,...,n, denote n observations of a vector of k time series.
The partial lag correlation matrix at lag I, P(l), is defined to be the correlation matrix between W; and
Wiy, after removing the linear dependence on each of the intervening vectors Wiy, Wiio, ..., Wit
It is the correlation matrix between the residual vectors resulting from the regression of W,;,; on the
carriers Wiy 1,..., Wy and the regression of W; on the same set of carriers; see Heyse and Wei
(1985).

P(I) has the following properties.

(i) If W, follows a vector autoregressive model of order p, then P(l) =0 for [ > p;
(i) When k=1, P(I) reduces to the univariate partial autocorrelation at lag I;

(iii) Each element of P(l) is a properly normalized correlation coefficient;

(iv) When [ =1, P(I) is equal to the cross-correlation matrix at lag 1 (a natural property which also
holds for the univariate partial autocorrelation function).

Sample estimates of the partial lag correlation matrices may be obtained using the recursive algorithm
described in Wei (1990). They are calculated up to lag m, which is usually taken to be at most n/4.

Only the sample cross-correlation matrices (R(l), for I=0,1,...,m) and the standard deviations of the
series are required as input to nag tsa multi corrmat partlag (gl3dn). These may be computed by
nag tsa multi_corrmat _cross (gl3dm). Under the hypothesis that W, follows an autoregressive model

of order s — 1, the elements of the sample partial lag matrix P(s), denoted by Piy-(s), are asymptotically
Normally distributed with mean zero and variance 1/n. In addition the statistic

ko k

X(s) =ny_ Y Pyls)

=1 j=1

has an asymptotic x*-distribution with &* degrees of freedom. These quantities, X(I), are useful as a
diagnostic aid for determining whether the series follows an autoregressive model and, if so, of what
order.

4 References

Heyse J F and Wei W W S (1985) The partial lag autocorrelation function Technical Report No. 32
Department of Statistics, Temple University, Philadelphia

Wei W W S (1990) Time Series Analysis: Univariate and Multivariate Methods Addison—Wesley
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5 Parameters
5.1 Compulsory Input Parameters
1: n — INTEGER

n, the number of observations in each series.

Constraint: m > 2.

2: m — INTEGER

m, the number of partial lag correlation matrices to be computed. Note this also specifies the
number of sample cross-correlation matrices that must be contained in the array r.

Constraint: 1 <m < n.

3: r0(kmaz,k) — REAL (KIND=nag_wp) array
kmazx, the first dimension of the array, must satisfy the constraint kmaz > k.
If ¢ # 7, thfn r0(i, j) must contain the (7, j)th element of the sample cross-correlation matrix at
lag zero, R;;(0). If i = j, then r0(7,7) must contain the standard deviation of the ith series.
4: r(kmax, kmaz, m) — REAL (KIND=nag_wp) array
kmaz, the first dimension of the array, must satisfy the constraint kmaz > k.
r(i,j,1) must contain the (4,7)th element of the sample cross-correlation at lag I, Rj;(l), for
I=12,....m,i=1,2,...,kand j=1,2,... k, where series j leads series ¢ (see Section 9).
5.2 Optional Input Parameters
1: k — INTEGER

Default: the first dimension of the arrays r0, r and the second dimension of the array r0. (An
error is raised if these dimensions are not equal.)

k, the dimension of the multivariate time series.

Constraint: kK > 1.

5.3 Output Parameters
1: maxlag — INTEGER

The maximum lag up to which partial lag correlation matrices (along with y?-statistics and their
significance levels) have been successfully computed. On a successful exit maxlag will equal m.
If ifail = 2 on exit, then maxlag will be less than m.

2: parlag(kmaz, kmaz,m) — REAL (KIND=nag_wp) array

parlag(i, j, 1) contains the (7,7)th element of the sample partial lag correlation matrix at lag I,
Py(l), for [=1,2,...,maxlag, i=1,2,...,kand j=1,2,... k.

3: x(m) — REAL (KIND=nag_wp) array
x(I) contains the y2-statistic at lag I, for [ = 1,2, ..., maxlag.
4: pvalue(m) — REAL (KIND=nag_ wp) array

pvalue(l) contains the significance level of the corresponding y2-statistic in x, for
[=1,2,..., maxlag.
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5: ifail — INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6  Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1
On entry, k < 1,
or n<?2,
or m <1,
or m > n,
or kmax <K,
or lwork < (5m + 6)k* + k.

ifail = 2 (warning)
The recursive equations used to compute the sample partial lag correlation matrices have broken
down at lag maxlag + 1. All output quantities in the arrays parlag, x and pvalue up to and
including lag maxlag will be correct.

ifail = —99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail = —399

Your licence key may have expired or may not have been installed correctly.

ifail = —999

Dynamic memory allocation failed.

7  Accuracy

The accuracy will depend upon the accuracy of the sample cross-correlations.

8 Further Comments

The time taken is roughly proportional to m?k>.

If you have calculated the sample cross-correlation matrices in the arrays r0 and r, without calling
nag tsa_multi corrmat cross (gl3dm), then care must be taken to ensure they are supplied as described
in Section 5. In particular, for [ > 1, Rij(l) must contain the sample cross-correlation coefficient
between w;;_;) and wj.

The function nag tsa multi autocorr part (gl3db) computes squared partial autocorrelations for a
specified number of lags. It may also be used to estimate a sequence of partial autoregression matrices
at lags 1,2,... by making repeated calls to the function with the argument nk set to 1,2,.... The
(7, 7)th element of the sample partial autoregression matrix at lag [ is given by W (4, ,1) when nk is set
equal to [ on entry to nag tsa multi_autocorr part (gl3db). Note that this is the “Yule—Walker’
estimate. Unlike the partial lag correlation matrices computed by nag tsa multi corrmat partlag
(g13dn), when W; follows an autoregressive model of order s — 1, the elements of the sample partial
autoregressive matrix at lag s do not have variance 1/n, making it very difficult to spot a possible cut-
off point. The differences between these matrices are discussed further by Wei (1990).

Note that nag tsa multi_autocorr part (gl3db) takes the sample cross-covariance matrices as input
whereas this function requires the sample cross-correlation matrices to be input.
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9 Example

This example computes the sample partial lag correlation matrices of two time series of length 48, up to
lag 10. The matrices, their x?-statistics and significance levels and a plot of symbols indicating which
elements of the sample partial lag correlation matrices are significant are printed. Three * represent
significance at the 0.5% level, two * represent significance at the 1% level and a single * represents
significance at the 5% level. The * are plotted above or below the central line depending on whether the
elements are significant in a positive or negative direction.

9.1 Program Text

function gl3dn_example

fprintf(’gl3dn example results\n\n’);

w = [-1.49, -1.62, 5.20, 6.23, 6.21, 5.86, 4.09, 3.18, 2.62, 1.49, 1.17,
0.85, -0.35, 0.24, 2.44, 2.58, 2.04, 0.40, 2.26, 3.34, 5.09, 5.00,
4.78, 4.11, 3.45, 1.65, 1.29, 4.09, 6.32, 7.50, 3.89, 1.58, 5.21,
5.25, 4.93, 7.38, 5.87, 5.81, 9.68, 9.07, 7.29, 7.84, 7.55, 7.32,
7.97, 7.76, 7.00, 8.35;
7.34, ©.35, 6.96, 8.54, 06.62, 4.97, 4.55, 4.81, 4.75, 4.76,10.88,
10.01, 11.62,10.36, 6.40, 6.24, 7.93, 4.04, 3.73, 5.60, 5.35, 6.81,
8.27, 7.68, 6.65, 6.08,10.25, 9.14,17.75,13.30, 9.63, 6.80, 4.08,
5.06, 4.94, 6.65, 7.94,10.76,11.89, 5.85, 9.01, 7.50,10.02,10.38,
8.15, 8.37, 10.73, 12.14];
[k,n] = size(w);
k = nag_int(k);
n = nag_int(n);
m = nag_int(10);
matrix = 'R’;
% Calculate cross correlations
[wmean, r0, r, ifail] = gl3dm(
matrix, k, m, w);
% Calculate sample partial lag correlation matrices
[maxlag, parlag, x, pvalue, ifail] =
gl3dn/(
n, m, ¥rO, 1);
disp(’Partial Lag Correlation Matrices’);
for 1 = 1:m
fprintf(’Lag = %d\n’,1);
disp(parlag(:,:,1));
end
snl = 1/sqrt(double(n));
fprintf (’Standard error = 1/sqrt(n) = %7.4f\n\n’,snl);
disp('Tables Of Indicator Symbols’);
fprintf (’\nFor Lags 1 to %d\n’,m);
lhs = {’ 0.005 =:"; ' + 0.01 '
’ 0.05 Har
! Sig. Level - - - - - - - - - - Lags’;
! 0.05 ' ;
’ - 0.01 HEAr I 0.005 <"y
¢ = snl*[3.29, 2.58, 1.96, 0, -1.96, -2.58, -3.29];
for i = 1:k
for j=1:k
if i==j
fprintf (’\nAuto-correlation function for series %d\n’, 1i);
else
fprintf(’\nCross-correlation function for series %d and series %d\n’,
i, j);
end
rhs = lhs;

for t = 1:m
for u = 1:3
if parlag(i,j,t)>c(u)
rhs{u} = strcat(rhs{u},’'*’);
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end
end
for u = 5:7
if parlag(i,j,t)<c(u)
rhs{u} = strcat(rhs{u},’'*’);
end
end
end
fprintf(’'\n’);
fprintf(’%s\n’,rhs{l:end});
end
end

fprintf (’\n Lag Chi-square statistic P-value\n\n’) ;

ilag = double([1l:m]);
fprintf(’%$4d%18.3£%19.4f\n’, [ilag; x'; pvalue’]);

9.2 Program Results

gl3dn example results

Partial Lag Correlation Matrices

Lag = 1
0.7359 0.1743
0.2114 0.5546
Lag = 2
-0.1869 -0.0832
-0.1805 -0.0724
Lag = 3
0.2775 -0.0069
0.0837 -0.2133
Lag = 4
-0.0843 0.2269
0.1284 -0.1764
Lag = 5
0.2361 0.2384
-0.0468 -0.0455
Lag = 6
-0.0164 0.0873
0.0996 -0.0809
Lag = 7
-0.0355 0.2611
0.1258 0.0120
Lag = 8
0.0767 0.3814
0.0268 -0.1492
Lag = 9
-0.0651 -0.3868
0.1887 0.0564
Lag = 10

-0.0261 -0.2861
0.0279 -0.1729

Standard error = 1/sqgrt(n) = 0.1443
Tables Of Indicator Symbols
For Lags 1 to 10

Auto-correlation function for series 1
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