
NAG Toolbox

nag_tsa_kalman_unscented_state (g13ek)

1 Purpose

nag_tsa_kalman_unscented_state (g13ek) applies the Unscented Kalman Filter (UKF) to a nonlinear
state space model, with additive noise.

nag_tsa_kalman_unscented_state (g13ek) uses forward communication for evaluating the nonlinear
functionals of the state space model.

2 Syntax

[xx, sstt, uusseerr, iiffaaiill] = nag_tsa_kalman_unscented_state(yy, llxx, llyy, ff, hh, xx, sstt,
’mx’, mmxx, ’my’, mmyy, ’user’, uusseerr)

[xx, sstt, uusseerr, iiffaaiill] = g13ek(yy, llxx, llyy, ff, hh, xx, sstt, ’mx’, mmxx, ’my’, mmyy, ’user’,
uusseerr)

3 Description

nag_tsa_kalman_unscented_state (g13ek) applies the Unscented Kalman Filter (UKF), as described in
Julier and Uhlmann (1997b) to a nonlinear state space model, with additive noise, which, at time t, can
be described by:

xtþ1 ¼ F xtð Þ þ vt
yt ¼ H xtð Þ þ ut

where xt represents the unobserved state vector of length mx and yt the observed measurement vector
of length my. The process noise is denoted vt, which is assumed to have mean zero and covariance
structure �x, and the measurement noise by ut, which is assumed to have mean zero and covariance
structure �y.

3.1 Unscented Kalman Filter Algorithm

Given x̂0, an initial estimate of the state and P0 and initial estimate of the state covariance matrix, the
UKF can be described as follows:

(a) Generate a set of sigma points (see Section 3.2):

X t ¼ x̂t�1 x̂t�1 þ �
ffiffiffiffiffiffiffiffiffi
Pt�1

p
x̂t�1 � �

ffiffiffiffiffiffiffiffiffi
Pt�1

ph i
ð1Þ

(b) Evaluate the known model function F :

F t ¼ F X tð Þ ð2Þ
The function F is assumed to accept the mx � n matrix, X t and return an mx � n matrix, F t. The
columns of both X t and F t correspond to different possible states. The notation F t;i is used to
denote the ith column of F t, hence the result of applying F to the ith possible state.

(c) Time Update:

x̂t ¼
Xn
i¼1

Wm
i F t;i ð3Þ

Pt ¼
Xn
i¼1

Wc
i F t;i � x̂t

� � F t;i � x̂t

� �T þ�x ð4Þ

G13 – Time Series Analysis g13ek

Mark 25 g13ek.1

(d) Redraw another set of sigma points (see Section 3.2):

Yt ¼ x̂t x̂t þ �
ffiffiffiffiffi
Pt

p
x̂t � �

ffiffiffiffiffi
Pt

ph i
ð5Þ

(e) Evaluate the known model function H:

Ht ¼ H Ytð Þ ð6Þ
The function H is assumed to accept the mx � n matrix, Yt and return an my � n matrix, Ht. The
columns of both Yt and Ht correspond to different possible states. As above Ht;i is used to denote
the ith column of Ht.

(f) Measurement Update:

ŷt ¼
Xn
i¼1

Wm
i Ht;i ð7Þ

Pyyt ¼
Xn
i¼1

Wc
i Ht;i � ŷt
� � Ht;i � ŷt

� �T þ�y ð8Þ

Pxyt ¼
Xn
i¼1

Wc
i F t;i � x̂t

� � Ht;i � ŷt
� �T ð9Þ

Kt ¼ PxytP
�1
yyt

ð10Þ
x̂t ¼ x̂t þKt yt � ŷtð Þ ð11Þ
Pt ¼ Pt �KtPyytKT

t ð12Þ
Here Kt is the Kalman gain matrix, x̂t is the estimated state vector at time t and Pt the corresponding
covariance matrix. Rather than implementing the standard UKF as stated above nag_tsa_kalman_
unscented_state (g13ek) uses the square-root form described in the Haykin (2001).

3.2 Sigma Points

A nonlinear state space model involves propagating a vector of random variables through a nonlinear
system and we are interested in what happens to the mean and covariance matrix of those variables.
Rather than trying to directly propagate the mean and covariance matrix, the UKF uses a set of
carefully chosen sample points, referred to as sigma points, and propagates these through the system of
interest. An estimate of the propagated mean and covariance matrix is then obtained via the weighted
sample mean and covariance matrix.

For a vector of m random variables, x, with mean � and covariance matrix �, the sigma points are
usually constructed as:

X t ¼ � �þ �
ffiffiffiffi
�

p
�� �

ffiffiffiffi
�

ph i

When calculating the weighted sample mean and covariance matrix two sets of weights are required,
one used when calculating the weighted sample mean, denoted Wm and one used when calculated the
weighted sample covariance matrix, denoted Wc. The weights and multiplier, �, are constructed as
follows:

� ¼ �2 Lþ �ð Þ � L

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ �

p

Wm
i ¼

�
Lþ� i ¼ 1

1
2 Lþ�ð Þ i ¼ 2; 3; . . . ; 2Lþ 1

�

Wc
i ¼

�
Lþ� þ 1� �2 þ � i ¼ 1

1
2 Lþ�ð Þ i ¼ 2; 3; . . . ; 2Lþ 1

�

where, usually L ¼ m and �; � and � are constants. The total number of sigma points, n, is given by
2Lþ 1. The constant � is usually set to somewhere in the range 10�4 � � � 1 and for a Gaussian
distribution, the optimal values of � and � are 3� L and 2 respectively.

g13ek NAG Toolbox for MATLAB Manual

g13ek.2 Mark 25

The constants, �, � and � are given by � ¼ 3�mx, � ¼ 1:0 and � ¼ 2. If more control is required over
the construction of the sigma points then the reverse communication function, nag_tsa_kalman_
unscented_state_revcom (g13ej), can be used instead.

4 References

Haykin S (2001) Kalman Filtering and Neural Networks John Wiley and Sons

Julier S J (2002) The scaled unscented transformation Proceedings of the 2002 American Control
Conference (Volume 6) 4555–4559

Julier S J and Uhlmann J K (1997a) A consistent, debiased method for converting between polar and
Cartesian coordinate systems Proceedings of AeroSense97, International Society for Optics and
Phonotonics 110–121

Julier S J and Uhlmann J K (1997b) A new extension of the Kalman Filter to nonlinear systems
International Symposium for Aerospace/Defense, Sensing, Simulation and Controls (Volume 3) 26

5 Parameters

5.1 Compulsory Input Parameters

1: yðmyÞ – REAL (KIND=nag_wp) array

yt, the observed data at the current time point.

2: lxðmx;mxÞ – REAL (KIND=nag_wp) array

Lx, such that LxL
T
x ¼ �x, i.e., the lower triangular part of a Cholesky decomposition of the

process noise covariance structure. Only the lower triangular part of lx is referenced.

If �x is time dependent, then the value supplied should be for time t.

3: lyðmy;myÞ – REAL (KIND=nag_wp) array

Ly, such that LyL
T
y ¼ �y, i.e., the lower triangular part of a Cholesky decomposition of the

observation noise covariance structure. Only the lower triangular part of ly is referenced.

If �y is time dependent, then the value supplied should be for time t.

4: f – SUBROUTINE, supplied by the user.

The state function, F as described in (b).

[fxt, user, info] = f(xt, user, info)

Input Parameters

1: xtðmx; nÞ – REAL (KIND=nag_wp) array

Xt, the sigma points generated in (a). For the jth sigma point, the value for the ith
parameter is held in xtði; jÞ, for i ¼ 1; 2; . . . ;mx and j ¼ 1; 2; . . . ; n, where mx is the
number of state variables and n is the number of sigma points.

2: user – INTEGER array

f is called from nag_tsa_kalman_unscented_state (g13ek) with the object supplied to
nag_tsa_kalman_unscented_state (g13ek).

3: info – INTEGER

info ¼ 0.

G13 – Time Series Analysis g13ek

Mark 25 g13ek.3

Output Parameters

1: fxtðmx; nÞ – REAL (KIND=nag_wp) array

F Xtð Þ.
For the jth sigma point the value for the ith parameter should be held in fxtði; jÞ, for
i ¼ 1; 2; . . . ;mx and j ¼ 1; 2; . . . ; n, where mx is the number of observed variables and
n is the number of sigma points supplied in xt.

2: user – INTEGER array

3: info – INTEGER

Set info to a nonzero value if you wish nag_tsa_kalman_unscented_state (g13ek) to
terminate with ifail ¼ 61.

5: h – SUBROUTINE, supplied by the user.

The measurement function, H as described in (e).

[hyt, user, info] = h(yt, user, info)

Input Parameters

1: ytðmx; nÞ – REAL (KIND=nag_wp) array

Yt, the sigma points generated in (d). For the jth sigma point, the value for the ith
parameter is held in ytði; jÞ, for i ¼ 1; 2; . . . ;mx and j ¼ 1; 2; . . . ; n, where mx is the
number of state variables and n is the number of sigma points.

2: user – INTEGER array

h is called from nag_tsa_kalman_unscented_state (g13ek) with the object supplied to
nag_tsa_kalman_unscented_state (g13ek).

3: info – INTEGER

info ¼ 0.

Output Parameters

1: hytðmy; nÞ – REAL (KIND=nag_wp) array

H Ytð Þ.
For the jth sigma point the value for the ith parameter should be held in hytði; jÞ, for
i ¼ 1; 2; . . . ;my and j ¼ 1; 2; . . . ; n, where my is the number of observed variables and
n is the number of sigma points supplied in yt.

2: user – INTEGER array

3: info – INTEGER

Set info to a nonzero value if you wish nag_tsa_kalman_unscented_state (g13ek) to
terminate with ifail ¼ 71.

6: xðmxÞ – REAL (KIND=nag_wp) array

The dimension of the array x must be at least mx

x̂t�1 the state vector for the previous time point.

g13ek NAG Toolbox for MATLAB Manual

g13ek.4 Mark 25

7: stðmx;mxÞ – REAL (KIND=nag_wp) array

St, such that St�1S
T
t�1 ¼ Pt�1, i.e., the lower triangular part of a Cholesky decomposition of the

state covariance matrix at the previous time point. Only the lower triangular part of st is
referenced.

5.2 Optional Input Parameters

1: mx – INTEGER

Default: the dimension of the array x and the first dimension of the arrays st, lx and the second
dimension of the arrays st, lx. (An error is raised if these dimensions are not equal.)

mx, the number of state variables.

Constraint: mx � 1.

2: my – INTEGER

Default: the dimension of the array y and the first dimension of the array ly and the second
dimension of the array ly. (An error is raised if these dimensions are not equal.)

my, the number of observed variables.

Constraint: my � 1.

3: user – INTEGER array

user is not used by nag_tsa_kalman_unscented_state (g13ek), but is passed to f and h. Note that
for large objects it may be more efficient to use a global variable which is accessible from the m-
files than to use user.

5.3 Output Parameters

1: xðmxÞ – REAL (KIND=nag_wp) array

The dimension of the array x will be mx

x̂t the updated state vector.

2: stðmx;mxÞ – REAL (KIND=nag_wp) array

The second dimension of the array st will be mx.

St, the lower triangular part of a Cholesky factorization of the updated state covariance matrix.

3: user – INTEGER array

4: ifail – INTEGER

ifail ¼ 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail ¼ 11

Constraint: mx � 1.

ifail ¼ 21

Constraint: my � 1.

G13 – Time Series Analysis g13ek

Mark 25 g13ek.5

ifail ¼ 61

User requested termination in f.

ifail ¼ 71

User requested termination in h.

ifail ¼ 301

A weight was negative and it was not possible to downdate the Cholesky factorization.

ifail ¼ 302

Unable to calculate the Kalman gain matrix.

ifail ¼ 303

Unable to calculate the Cholesky factorization of the updated state covariance matrix.

ifail ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail ¼ �399

Your licence key may have expired or may not have been installed correctly.

ifail ¼ �999

Dynamic memory allocation failed.

7 Accuracy

Not applicable.

8 Further Comments

None.

9 Example

This example implements the following nonlinear state space model, with the state vector x and state
update function F given by:

mx ¼ 3

xtþ1 ¼ 	tþ1
tþ1 �tþ1

� �T
¼ F xtð Þ þ vt

¼ xt þ
cos �t � sin �t 0
sin �t cos �t 0
0 0 1

0
@

1
A 0:5r 0:5r

0 0
r=d �r=d

0
@

1
A �Rt

�Lt

� �
þ vt

where r and d are known constants and �Rt and �Lt are time-dependent knowns. The measurement
vector y and measurement function H is given by:

my ¼ 2
yt ¼
t; �tð ÞT

¼ H xtð Þ þ ut

¼ �� 	t cosA�
t sinA
�t �A

� �
þ ut

where A and � are known constants. The initial values, x0 and P0, are given by

g13ek NAG Toolbox for MATLAB Manual

g13ek.6 Mark 25

x0 ¼
0
0
0

0
@

1
A; P0 ¼

0:1 0 0
0 0:1 0
0 0 0:1

0
@

1
A

and the Cholesky factorizations of the error covariance matrices, Lx and Lx by

Lx ¼
0:1 0 0
0 0:1 0
0 0 0:1

0
@

1
A ; Ly ¼ 0:01 0

0 0:01

� �

9.1 Program Text

function g13ek_example

fprintf(’g13ek example results\n\n’);

% Cholesky factorisation of the covariance matrix for
% the process noise
lx = 0.1 * eye(3);

% Cholesky factorisation of the covariance matrix for
% the observation noise
ly = 0.01 * eye(2);

% Initial state vector
ix = zeros(size(lx,1),1);
x = ix;

% Cholesky factorisation of the initial state covariance matrix
st = 0.1 * eye(3);

% Constant terms in the state space model
r = 3;
d = 4;
Delta = 5.814;
A = 0.464;

% Observed data, y = (delta, alpha)
y = [5.2620 4.3470 3.8180 2.7060 1.8780 0.6840 0.7520 ...

0.4640 0.5970 0.8420 1.4120 1.5270 2.3990 2.6610 3.3270;
5.9230 5.7830 6.1810 0.0850 0.4420 0.8360 1.3000 ...
1.7000 1.7810 2.0400 2.2860 2.8200 3.1470 3.5690 3.6590];

% Number of time points to run the system for
ntime = size(y,2);

% phi_r and phi_l (these are the same across all time points in
% this example)
phi_r = ones(ntime,1) * 0.4;
phi_l = ones(ntime,1) * 0.1;

mx = numel(x);

% Reserve some space to hold the state
cx = zeros(mx,ntime);

% Loop over each time point
for t = 1:ntime

% Observed data at time point t
y_t = y(:,t);
phi_rt = phi_r(t);
phi_lt = phi_l(t);

% Store the information required by f and h in a cell array
user = {Delta;A;r;d;phi_rt;phi_lt};

G13 – Time Series Analysis g13ek

Mark 25 g13ek.7

% Update the state and its covariance matrix
[x,st,user,ifail] = g13ek(...

y_t,lx,ly,@f,@h,x,st,’user’,user);

% Store the current state
cx(:,t) = x(:);

end

% Print the results
ttext = [’ Time ’ blanks(ceil((11*mx- 16)/2)) ’ Estimate of State’ ...

blanks(ceil((11*mx -16)/2))];
fprintf(’%s\n’,ttext);
ttext(:) = ’-’;
fprintf(’%s\n’,ttext);
for t = 1:ntime

fprintf(’ %3d ’, t);
fprintf(’ %10.3f’, cx(1:mx,t));
fprintf(’\n’);

end

fprintf(’\nEstimate of Cholesky Factorisation of the State\n’);
fprintf(’Covariance Matrix at the Last Time Point\n’);
for i=1:mx

for j=1:i
fprintf(’ %10.2e’,st(i,j));

end
fprintf(’\n’);

end

% Plot the results
fig1 = figure;

% calculate and plot the position and facing of the robot as if there
% were no slippage in the wheels
pos_no_slippage(:,1) = ix;
rot_mat = [r/2 r/2; 0 0;r/d -r/d];
for t=1:ntime

v_r = rot_mat * [phi_r(t); phi_l(t)];
theta = pos_no_slippage(3,t);
T = [cos(theta) -sin(theta) 0; sin(theta) cos(theta) 0; 0 0 1];
pos_no_slippage(:,t+1) = pos_no_slippage(:,t) + T*v_r;

end

% formula (of the form y = a + b x) for the position of the wall
b = -cos(A) / sin(A);
a = Delta * (sin(A) + cos(A)^2/sin(A));

% actual position and facing of the robot
% (this would usually be unknown, but this example
% is based on a simulation and hence we know the answer)
pos_actual = [0.000 0.617 1.590 2.192 ...

3.238 3.947 4.762 4.734 ...
4.529 3.955 3.222 2.209 ...
2.047 1.137 0.903 0.443;
0.000 0.000 0.101 0.079 ...
0.474 0.908 1.947 1.850 ...
2.904 3.757 4.675 5.425 ...
5.492 5.362 5.244 4.674;
0.000 0.103 0.036 0.361 ...
0.549 0.906 1.299 1.763 ...
2.164 2.245 2.504 2.749 ...
3.284 3.610 4.033 4.123];

% produce the plot
h(1) = plot_robot(pos_no_slippage,’s’,’green’,’green’);
hold on
h(2) = plot_robot(pos_actual,’c’,’red’,’red’);
h(3) = plot_robot([zeros(3,1) cx],’c’,’blue’,’none’);
hold off

% Add reference line for the wall

g13ek NAG Toolbox for MATLAB Manual

g13ek.8 Mark 25

yl = ylim;
line([(yl(1) - a)/b (yl(2) - a) / b],yl,’Color’,’black’);
xlim([-0.5 7]);

% Add title
title({’{\bf g13ek Example Plot}’,

’Illustration of Position and Orientation’,
’ of Hypothetical Robot’});

% Add legend
label = [’Initial’ ’Actual’ ’Updated’];
h(4) = legend(h,’Initial’,’Actual’,’Updated’,’Location’,’NorthEast’);
set(h(4),’FontSize’,get(h(4),’FontSize’)*0.8);

% Add text to indicate wall
text(4.6,3.9,’Wall’,’Rotation’,-63);

function [fxt,user,info] = f(xt,user,info)
r = user{3};
d = user{4};
phi_rt = user{5};
phi_lt = user{6};

t1 = 0.5*r*(phi_rt+phi_lt);
t3 = (r/d)*(phi_rt-phi_lt);

fxt(1,:) = xt(1,:) + cos(xt(3,:))*t1;
fxt(2,:) = xt(2,:) + sin(xt(3,:))*t1;
fxt(3,:) = xt(3,:) + t3;

% Set info nonzero to terminate execution for any reason.
info = nag_int(0);

function [hyt,user,info] = h(yt,user,info)
Delta = user{1};
A = user{2};

hyt(1,:) = Delta - yt(1,:)*cos(A) - yt(2,:)*sin(A);
hyt(2,:) = yt(3,:) - A;

% Make sure that the theta is in the same range as the observed
% data, which in this case is [0, 2*pi)
hyt(2,(hyt(2,:) < 0)) = hyt(2,(hyt(2,:) < 0)) + 2 * pi;

% Set info nonzero to terminate execution for any reason.
info = nag_int(0);

function [h] = plot_robot(x,symbol,colour,fill)
alen = 0.3;
h = scatter(x(1,:),x(2,:),60,colour,symbol,’MarkerFaceColor’,fill);
aend = [x(1,:)+alen*cos(x(3,:)); x(2,:)+alen*sin(x(3,:))];
line([x(1,:); aend(1,:)],[x(2,:); aend(2,:)],’Color’,colour);

9.2 Program Results

g13ek example results

Time Estimate of State
--

1 0.664 -0.092 0.104
2 1.598 0.081 0.314
3 2.128 0.213 0.378
4 3.134 0.674 0.660
5 3.809 1.181 0.906
6 4.730 2.000 1.298
7 4.429 2.474 1.762
8 4.357 3.246 2.162
9 3.907 3.852 2.246

10 3.360 4.398 2.504
11 2.552 4.741 2.750

G13 – Time Series Analysis g13ek

Mark 25 g13ek.9

12 2.191 5.193 3.281
13 1.309 5.018 3.610
14 1.071 4.894 4.031
15 0.618 4.322 4.124

Estimate of Cholesky Factorisation of the State
Covariance Matrix at the Last Time Point

1.92e-01
-3.82e-01 2.22e-02
1.58e-06 2.23e-07 9.95e-03

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7

 g13ek Example Plot
Illustration of Position and Orientation

 of Hypothetical Robot

W

all

Initial
Actual
Updated

g13ek NAG Toolbox for MATLAB Manual

g13ek.10 Mark 25

The example described above can be thought of relating to the movement of a hypothetical robot. The
unknown state, x, is the position of the robot (with respect to a reference frame) and facing, with 	;
ð Þ
giving the x and y coordinates and � the angle (with respect to the x-axis) that the robot is facing. The
robot has two drive wheels, of radius r on an axle of length d. During time period t the right wheel is
believed to rotate at a velocity of �Rt and the left at a velocity of �Lt. In this example, these velocities
are fixed with �Rt ¼ 0:4 and �Lt ¼ 0:1. The state update function, F , calculates where the robot should
be at each time point, given its previous position. However, in reality, there is some random fluctuation
in the velocity of the wheels, for example, due to slippage. Therefore the actual position of the robot
and the position given by equation F will differ.

In the area that the robot is moving there is a single wall. The position of the wall is known and defined
by its distance, �, from the origin and its angle, A, from the x-axis. The robot has a sensor that is able
to measure y, with
 being the distance to the wall and � the angle to the wall. The measurement
function H gives the expected distance and angle to the wall if the robot's position is given by xt.
Therefore the state space model allows the robot to incorporate the sensor information to update the
estimate of its position.

G13 – Time Series Analysis g13ek

Mark 25 g13ek.11 (last)

	nag_tsa_kalman_unscented_state (g13ek)
	1 Purpose
	2 Syntax
	3 Description
	3.1 Unscented Kalman Filter Algorithm
	3.2 Sigma Points

	4 References
	Haykin (2001)
	Julier (2002)
	Julier and Uhlmann (1997a)
	Julier and Uhlmann (1997b)

	5 Parameters
	5.1 Compulsory Input Parameters
	y
	lx
	ly
	f
	F Input Parameters
	xt
	user
	info

	F Output Parameters
	fxt
	user
	info

	h
	H Input Parameters
	yt
	user
	info

	H Output Parameters
	hyt
	user
	info

	x
	st

	5.2 Optional Input Parameters
	mx
	my
	user

	5.3 Output Parameters
	x
	st
	user
	ifail

	6 Error Indicators and Warnings
	ifail=11
	ifail=21
	ifail=61
	ifail=71
	ifail=301
	ifail=302
	ifail=303
	ifail=-99
	ifail=-399
	ifail=-999

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Results

	NAG Toolbox for Matlab Manual, Mark 25
	Chapters of the Library
	A00 - library identification
	A00 Chapter Introduction

	A02 - complex arithmetic
	A02 Chapter Introduction

	C02 - zeros of polynomials
	C02 Chapter Introduction

	C05 - roots of one or more transcendental equations
	C05 Chapter Introduction

	C06 - summation of series
	C06 Chapter Introduction

	C09 - wavelet transforms
	C09 Chapter Introduction

	D01 - quadrature
	D01 Chapter Introduction

	D02 - ordinary differential equations
	D02 Chapter Introduction

	D03 - partial differential equations
	D03 Chapter Introduction

	D04 - numerical differentiation
	D04 Chapter Introduction

	D05 - integral equations
	D05 Chapter Introduction

	D06 - mesh generation
	D06 Chapter Introduction

	E01 - interpolation
	E01 Chapter Introduction

	E02 - curve and surface fitting
	E02 Chapter Introduction

	E04 - minimizing or maximizing a function
	E04 Chapter Introduction

	E05 - global optimization of a function
	E05 Chapter Introduction

	F - linear algebra
	F Chapter Introduction

	F01 - matrix operations, including inversion
	F01 Chapter Introduction

	F02 - eigenvalues and eigenvectors
	F02 Chapter Introduction

	F03 - determinants
	F03 Chapter Introduction

	F04 - simultaneous linear equations
	F04 Chapter Introduction

	F05 - orthogonalization
	F05 Chapter Introduction

	F07 - linear equations (lapack)
	F07 Chapter Introduction

	F08 - least squares and eigenvalue problems (lapack)
	F08 Chapter Introduction

	F11 - large scale linear systems
	F11 Chapter Introduction

	F12 - large scale eigenproblems
	F12 Chapter Introduction

	F16 - further linear algebra support routines
	F16 Chapter Introduction

	G01 - simple calculations on statistical data
	G01 Chapter Introduction

	G02 - correlation and regression analysis
	G02 Chapter Introduction

	G03 - multivariate methods
	G03 Chapter Introduction

	G04 - analysis of variance
	G04 Chapter Introduction

	G05 - random number generators
	G05 Chapter Introduction

	G07 - univariate estimation
	G07 Chapter Introduction

	G08 - nonparametric statistics
	G08 Chapter Introduction

	G10 - smoothing in statistics
	G10 Chapter Introduction

	G11 - contingency table analysis
	G11 Chapter Introduction

	G12 - survival analysis
	G12 Chapter Introduction

	G13 - time series analysis
	G13 Chapter Introduction

	H - operations research
	H Chapter Introduction

	M01 - sorting and searching
	M01 Chapter Introduction

	S - approximations of special functions
	S Chapter Introduction

	X01 - mathematical constants
	X01 Chapter Introduction

	X02 - machine constants
	X02 Chapter Introduction

	X03 - inner products
	X03 Chapter Introduction

	X04 - input/output utilities
	X04 Chapter Introduction

	X05 - date and time utilities
	X05 Chapter Introduction

	X06 - Multi-threading Utilities
	X06 Chapter Introduction

