
NAG Toolbox

nag_mip_ilp_dense (h02bb)

1 Purpose

nag_mip_ilp_dense (h02bb) solves ‘zero-one’, ‘general’, ‘mixed’ or ‘all’ integer programming problems
using a branch and bound method. The function may also be used to find either the first integer solution
or the optimum integer solution. It is not intended for large sparse problems.

2 Syntax

[iittmmaaxx, ttoolliivv, ttoollffeess, bbiiggbbnndd, xx, oobbjjmmiipp, iiwwoorrkk, rrwwoorrkk, iiffaaiill] =
nag_mip_ilp_dense(iittmmaaxx, mmssggllvvll, aa, bbll, bbuu, iinnttvvaarr, ccvveecc, mmaaxxnnoodd, iinnttffsstt,
ttoolliivv, ttoollffeess, bbiiggbbnndd, xx, ’n’, nn, ’m’, mm, ’maxdpt’, mmaaxxddpptt)

[iittmmaaxx, ttoolliivv, ttoollffeess, bbiiggbbnndd, xx, oobbjjmmiipp, iiwwoorrkk, rrwwoorrkk, iiffaaiill] = h02bb(iittmmaaxx,
mmssggllvvll, aa, bbll, bbuu, iinnttvvaarr, ccvveecc, mmaaxxnnoodd, iinnttffsstt, ttoolliivv, ttoollffeess, bbiiggbbnndd, xx, ’n’,
nn, ’m’, mm, ’maxdpt’, mmaaxxddpptt)

3 Description

nag_mip_ilp_dense (h02bb) is capable of solving certain types of integer programming (IP) problems
using a branch and bound (B&B) method, see Taha (1987). In order to describe these types of integer
programs and to briefly state the B&B method, we define the following linear programming (LP)
problem:

Minimize

F xð Þ ¼ c1x1 þ c2x2 þ � � � þ cnxn

subject to

Xn
j¼1

aijxj

¼
�
�

8<
:

9=
;bi; i ¼ 1; 2; . . . ;m

lj � xj � uj; j ¼ 1; 2; . . . ; n ð1Þ
If, in (1), it is required that (some or) all the variables take integer values, then the integer program is
of type (mixed or) all general IP problem. If additionally, the integer variables are restricted to take only
0–1 values (i.e., lj ¼ 0 and uj ¼ 1) then the integer program is of type (mixed or all) zero-one IP
problem.

The B&B method applies directly to these integer programs. The general idea of B&B (for a full
description see Dakin (1965) or Mitra (1973)) is to solve the problem without the integral restrictions as
an LP problem (first node). If in the optimal solution an integer variable xk takes a noninteger value x�k,
two LP sub-problems are created by branching, imposing xk � x�k

� �
and xk � x�

k

� �þ 1 respectively,
where x�

k

� �
denotes the integer part of x�k. This method of branching continues until the first integer

solution (bound) is obtained. The hanging nodes are then solved and investigated in order to prove the
optimality of the solution. At each node, an LP problem is solved using nag_opt_lp_solve (e04mf).

H – Operations Research h02bb

Mark 25 h02bb.1



4 References

Dakin R J (1965) A tree search algorithm for mixed integer programming problems Comput. J. 8 250–
255

Mitra G (1973) Investigation of some branch and bound strategies for the solution of mixed integer
linear programs Math. Programming 4 155–170

Taha H A (1987) Operations Research: An Introduction Macmillan, New York

5 Parameters

5.1 Compulsory Input Parameters

1: itmax – INTEGER

An upper bound on the number of iterations for each LP problem.

2: msglvl – INTEGER

The amount of printout produced by nag_mip_ilp_dense (h02bb).

Value Definition

0 No output.

1 The final IP solution only.

5 One line of output for each node investigated and the final IP solution.

10 The original LP solution (first node), one line of output for each node investigated and
the final IP solution.

3: aðlda; :Þ – REAL (KIND=nag_wp) array

The first dimension of the array a must be at least max 1;mð Þ.
The second dimension of the array a must be at least n if m > 0 and at least 1 if m ¼ 0.

The ith row of a must contain the coefficients of the ith general constraint, for i ¼ 1; 2; . . . ;m.

If m ¼ 0 then the array a is not referenced.

4: blðnþmÞ – REAL (KIND=nag_wp) array
5: buðnþmÞ – REAL (KIND=nag_wp) array

bl must contain the lower bounds and bu the upper bounds, for all the constraints in the
following order. The first n elements of each array must contain the bounds on the variables, and
the next m elements the bounds for the general linear constraints (if any). To specify a
nonexistent lower bound (i.e., lj ¼ �1), set blðjÞ � �bigbnd and to specify a nonexistent upper
bound (i.e., uj ¼ þ1), set buðjÞ � bigbnd. To specify the jth constraint as an equality, set
blðjÞ ¼ buðjÞ ¼ �, say, where �j j < bigbnd.

Constraints:

blðjÞ � buðjÞ, for j ¼ 1; 2; . . . ;nþm;
if blðjÞ ¼ buðjÞ ¼ �, �j j < bigbnd.

6: intvarðnÞ – INTEGER array

Indicates which are the integer variables in the problem. For example, if xj is an integer variable
then intvarðjÞ must be set to 1, and 0 otherwise.

Constraints:

intvarðjÞ ¼ 0 or 1, for j ¼ 1; 2; . . . ; n;
intvarðjÞ ¼ 1 for at least one value of j.

h02bb NAG Toolbox for MATLAB Manual

h02bb.2 Mark 25



7: cvecðnÞ – REAL (KIND=nag_wp) array

The coefficients cj of the objective function F xð Þ ¼ c1x1 þ c2x2 þ . . .þ cnxn. The function
attempts to find a minimum of F xð Þ. If a maximum of F xð Þ is desired, cvecðjÞ should be set to
�cj , for j ¼ 1; 2; . . . ; n, so that the function will find a minimum of �F xð Þ.

8: maxnod – INTEGER

The maximum number of nodes that are to be searched in order to find a solution (optimum
integer solution). If maxnod � 0 and intfst � 0, then the B&B tree search is continued until all
the nodes have been investigated.

9: intfst – INTEGER

Specifies whether to terminate the B&B tree search after the first integer solution (if any) is
obtained. If intfst > 0 then the B&B tree search is terminated at node k say, which contains the
first integer solution. For maxnod > 0 this applies only if k � maxnod.

10: toliv – REAL (KIND=nag_wp)

The integer feasibility tolerance; i.e., an integer variable is considered to take an integer value if
its violation does not exceed toliv. For example, if the integer variable xj is near unity then xj is
considered to be integer only if 1� tolivð Þ � xj � 1þ tolivð Þ.

11: tolfes – REAL (KIND=nag_wp)

The maximum acceptable absolute violation in each constraint at a ‘feasible’ point (feasibility
tolerance); i.e., a constraint is considered satisfied if its violation does not exceed tolfes.

12: bigbnd – REAL (KIND=nag_wp)

The ‘infinite’ bound size in the definition of the problem constraints. More precisely, any upper
bound greater than or equal to bigbnd will be regarded as þ1 and any lower bound less than or
equal to �bigbnd will be regarded as �1.

13: xðnÞ – REAL (KIND=nag_wp) array

An initial estimate of the original LP solution.

5.2 Optional Input Parameters

1: n – INTEGER

Default: the dimension of the arrays cvec, x, intvar. (An error is raised if these dimensions are
not equal.)

n, the number of variables.

Constraint: n > 0.

2: m – INTEGER

Default: the first dimension of the array a.

m, the number of general linear constraints.

Constraint: m � 0.

3: maxdpt – INTEGER

Suggested value: maxdpt ¼ 3� n=2.

Default: 3� n=2

H – Operations Research h02bb

Mark 25 h02bb.3



The maximum depth of the B&B tree used for branch and bound.

Constraint: maxdpt � 2.

5.3 Output Parameters

1: itmax – INTEGER

Unchanged if on entry itmax > 0, else itmax ¼ max 50; 5� nþmð Þð Þ.

2: toliv – REAL (KIND=nag_wp)

Unchanged if on entry toliv > 0:0, else toliv ¼ 10�5.

3: tolfes – REAL (KIND=nag_wp)

Unchanged if on entry tolfes > 0:0, else tolfes ¼ ffiffi
�

p
(where � is the machine precision).

4: bigbnd – REAL (KIND=nag_wp)

Unchanged if on entry bigbnd > 0:0, else bigbnd ¼ 1020.

5: xðnÞ – REAL (KIND=nag_wp) array

With ifail ¼ 0, x contains a solution which will be an estimate of either the optimum integer
solution or the first integer solution, depending on the value of intfst. If ifail ¼ 9, then x contains
a solution which will be an estimate of the best integer solution that was obtained by searching
maxnod nodes.

6: objmip – REAL (KIND=nag_wp)

With ifail ¼ 0 or 9, objmip contains the value of the objective function for the IP solution.

7: iworkðliworkÞ – INTEGER array

8: rworkðlrworkÞ – REAL (KIND=nag_wp) array

9: ifail – INTEGER

ifail ¼ 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Note: nag_mip_ilp_dense (h02bb) may return useful information for one or more of the following
detected errors or warnings.

Errors or warnings detected by the function:

ifail ¼ 1

No feasible integer point was found, i.e., it was not possible to satisfy all the integer variables to
within the integer feasibility tolerance (determined by toliv). Increase toliv and rerun
nag_mip_ilp_dense (h02bb).

ifail ¼ 2

The original LP solution appears to be unbounded. This value of ifail implies that a step as large
as bigbnd would have to be taken in order to continue the algorithm (see Section 9).

ifail ¼ 3

No feasible point was found for the original LP problem, i.e., it was not possible to satisfy all the
constraints to within the feasibility tolerance (determined by tolfes). If the data for the constraints

h02bb NAG Toolbox for MATLAB Manual

h02bb.4 Mark 25



are accurate only to the absolute precision �, you should ensure that the value of the feasibility
tolerance is greater than �. For example, if all elements of A are of order unity and are accurate
only to three decimal places, the feasibility tolerance should be at least 10�3 (see Section 9).

ifail ¼ 4

The maximum number of iterations (determined by itmax) was reached before normal
termination occurred for the original LP problem (see Section 9).

ifail ¼ 5

Not used by this function.

ifail ¼ 6

An input argument is invalid.

ifail ¼ 7 (warning)

The IP solution reported is not the optimum IP solution. In other words, the B&B tree search for
at least one of the branches had to be terminated since an LP sub-problem in the branch did not
have a solution (see Section 9).

ifail ¼ 8

The maximum depth of the B&B tree used for branch and bound (determined by maxdpt) is too
small. Increase maxdpt and rerun nag_mip_ilp_dense (h02bb).

ifail ¼ 9 (warning)

The IP solution reported is the best IP solution for the number of nodes (determined by maxnod)
investigated in the B&B tree.

ifail ¼ 10

No feasible integer point was found for the number of nodes (determined by maxnod)
investigated in the B&B tree.

ifail ¼ 11

The maximum depth of the B&B tree used for branch and bound (determined by maxdpt) is too
small. Increase maxdpt and rerun nag_mip_ilp_dense (h02bb).

Overflow

It may be possible to avoid the difficulty by increasing the magnitude of the feasibility tolerance
(tolfes) and rerunning the program. If the message recurs even after this change, see Section 9.

ifail ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail ¼ �399

Your licence key may have expired or may not have been installed correctly.

ifail ¼ �999

Dynamic memory allocation failed.

7 Accuracy

nag_mip_ilp_dense (h02bb) implements a numerically stable active set strategy and returns solutions
that are as accurate as the condition of the problem warrants on the machine.

H – Operations Research h02bb

Mark 25 h02bb.5



8 Further Comments

The original LP problem may not have an optimum solution, i.e., nag_mip_ilp_dense (h02bb)
terminates with ifail ¼ 2, 3 or 4 or overflow may occur. In this case, you are recommended to relax the
integer restrictions of the problem and try to find the optimum LP solution by using nag_opt_lp_solve
(e04mf) instead.

In the B&B method, it is possible for an LP sub-problem to terminate without finding a solution. This
may occur due to the number of iterations exceeding the maximum allowed. Therefore the B&B tree
search for that particular branch cannot be continued. Thus the returned solution may not be optimal.
(ifail ¼ 7). For the second and unlikely case, a solution could not be found despite a second attempt at
an LP solution.

9 Example

This example solves the integer programming problem:

maximize

F xð Þ ¼ 3x1 þ 4x2

subject to the bounds

x1 � 0
x2 � 0

and to the general constraints

2x1 þ 5x2 � 15
2x1 � 2x2 � 5
3x1 þ 2x2 � 5

where x1 and x2 are integer variables.

The initial point, which is feasible, is

x0 ¼ 1; 1ð ÞT;
and F x0ð Þ ¼ 7.

The optimal solution is

x� ¼ 2; 2ð ÞT;
and F x�ð Þ ¼ 14.

Note that maximizing F xð Þ is equivalent to minimizing �F xð Þ.

9.1 Program Text

function h02bb_example

fprintf(’h02bb example results\n\n’);

% Maximize (3,4).x; negate and minimize
cvec = [-3; -4];
% subject to constraints bl <= Ax <= bu
a = [ 2, 5;

2, -2;
3, 2];

big = 1e+20;
% first 2 elements are bounds on x, the remainder are bounds on Ax
bl = [ 0; 0; -big; -big; 5];
bu = [big; big; 15; 5; big];

% both x variables are integers
intvar = nag_int([1;1]);

h02bb NAG Toolbox for MATLAB Manual

h02bb.6 Mark 25



itmax = nag_int(0);
msglvl = nag_int(1);
maxnod = nag_int(0);
intfst = nag_int(0);
toliv = 0;
tolfes = 0;
bigbnd = big;
% Initial guess for x
x = [1; 1];
[itmax, toliv, tolfes, bigbnd, x, objmip, iwork, rwork, ifail] = ...

h02bb(...
itmax, msglvl, a, bl, bu, intvar, cvec, maxnod, intfst, toliv, ...
tolfes, bigbnd, x, ’maxdpt’, nag_int(4));

9.2 Program Results

h02bb example results

*** IP solver

Parameters
----------

Linear constraints...... 3 First integer solution.. OFF
Variables............... 2 Max depth of the tree... 4

Feasibility tolerance... 1.05E-08 Print level............. 1
Infinite bound size..... 1.00E+20 EPS (machine precision). 1.11E-16

Integer feasibility tol. 1.00E-05 Iteration limit......... 50
Max number of nodes..... NONE

** Workspace provided with MAXDPT = 4: LRWORK = 84 LIWORK = 137
** Workspace required with MAXDPT = 4: LRWORK = 84 LIWORK = 137

Total of 9 nodes investigated.

Exit IP solver - Optimum IP solution found.

Final IP objective value = -14.00000

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 UL 2.00000 0.00000 2.00000 -3.000 0.000
V 2 EQ 2.00000 2.00000 2.00000 -4.000 0.000

L Con State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 FR 14.0000 None 15.0000 0.000 1.000
L 2 FR 0.00000 None 5.00000 0.000 5.000
L 3 FR 10.0000 5.00000 None 0.000 5.000

H – Operations Research h02bb

Mark 25 h02bb.7 (last)


	nag_mip_ilp_dense (h02bb)
	1 Purpose
	2 Syntax
	3 Description
	4 References
	Dakin (1965)
	Mitra (1973)
	Taha (1987)

	5 Parameters
	5.1 Compulsory Input Parameters
	itmax
	msglvl
	a
	bl
	bu
	intvar
	cvec
	maxnod
	intfst
	toliv
	tolfes
	bigbnd
	x

	5.2 Optional Input Parameters
	n
	m
	maxdpt

	5.3 Output Parameters
	itmax
	toliv
	tolfes
	bigbnd
	x
	objmip
	iwork
	rwork
	ifail


	6 Error Indicators and Warnings
	ifail=1
	ifail=2
	ifail=3
	ifail=4
	ifail=5
	ifail=6
	ifail=7
	ifail=8
	ifail=9
	ifail=10
	ifail=11
	Overflow
	ifail=-99
	ifail=-399
	ifail=-999

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Results


	NAG Toolbox for Matlab Manual, Mark 25
	Chapters of the Library
	A00 - library identification
	A00 Chapter Introduction

	A02 - complex arithmetic
	A02 Chapter Introduction

	C02 - zeros of polynomials
	C02 Chapter Introduction

	C05 - roots of one or more transcendental equations
	C05 Chapter Introduction

	C06 - summation of series
	C06 Chapter Introduction

	C09 - wavelet transforms
	C09 Chapter Introduction

	D01 - quadrature
	D01 Chapter Introduction

	D02 - ordinary differential equations
	D02 Chapter Introduction

	D03 - partial differential equations
	D03 Chapter Introduction

	D04 - numerical differentiation
	D04 Chapter Introduction

	D05 - integral equations
	D05 Chapter Introduction

	D06 - mesh generation
	D06 Chapter Introduction

	E01 - interpolation
	E01 Chapter Introduction

	E02 - curve and surface fitting
	E02 Chapter Introduction

	E04 - minimizing or maximizing a function
	E04 Chapter Introduction

	E05 - global optimization of a function
	E05 Chapter Introduction

	F - linear algebra
	F Chapter Introduction

	F01 - matrix operations, including inversion
	F01 Chapter Introduction

	F02 - eigenvalues and eigenvectors
	F02 Chapter Introduction

	F03 - determinants
	F03 Chapter Introduction

	F04 - simultaneous linear equations
	F04 Chapter Introduction

	F05 - orthogonalization
	F05 Chapter Introduction

	F07 - linear equations (lapack)
	F07 Chapter Introduction

	F08 - least squares and eigenvalue problems (lapack)
	F08 Chapter Introduction

	F11 - large scale linear systems
	F11 Chapter Introduction

	F12 - large scale eigenproblems
	F12 Chapter Introduction

	F16 - further linear algebra support routines
	F16 Chapter Introduction

	G01 - simple calculations on statistical data
	G01 Chapter Introduction

	G02 - correlation and regression analysis
	G02 Chapter Introduction

	G03 - multivariate methods
	G03 Chapter Introduction

	G04 - analysis of variance
	G04 Chapter Introduction

	G05 - random number generators
	G05 Chapter Introduction

	G07 - univariate estimation
	G07 Chapter Introduction

	G08 - nonparametric statistics
	G08 Chapter Introduction

	G10 - smoothing in statistics
	G10 Chapter Introduction

	G11 - contingency table analysis
	G11 Chapter Introduction

	G12 - survival analysis
	G12 Chapter Introduction

	G13 - time series analysis
	G13 Chapter Introduction

	H - operations research
	H Chapter Introduction

	M01 - sorting and searching
	M01 Chapter Introduction

	S - approximations of special functions
	S Chapter Introduction

	X01 - mathematical constants
	X01 Chapter Introduction

	X02 - machine constants
	X02 Chapter Introduction

	X03 - inner products
	X03 Chapter Introduction

	X04 - input/output utilities
	X04 Chapter Introduction

	X05 - date and time utilities
	X05 Chapter Introduction

	X06 - Multi-threading Utilities
	X06 Chapter Introduction




