
NAG Toolbox

nag_mip_iqp_dense (h02cb)

1 Purpose

nag_mip_iqp_dense (h02cb) solves general quadratic programming problems with integer constraints on
the variables. It is not intended for large sparse problems.

2 Syntax

[iissttaattee, xxss, oobbjj, aaxx, ccllaammddaa, iiffaaiill] = nag_mip_iqp_dense(aa, bbll, bbuu, ccvveecc, hh,
qqpphheessss, iinnttvvaarr, iissttaattee, xxss, ssttrrttggyy, mmoonniitt, ’n’, nn, ’nclin’, nncclliinn, ’lintvr’,
lliinnttvvrr, ’mdepth’, mmddeepptthh, ’lwrk’, llwwrrkk)

[iissttaattee, xxss, oobbjj, aaxx, ccllaammddaa, iiffaaiill] = h02cb(aa, bbll, bbuu, ccvveecc, hh, qqpphheessss, iinnttvvaarr,
iissttaattee, xxss, ssttrrttggyy, mmoonniitt, ’n’, nn, ’nclin’, nncclliinn, ’lintvr’, lliinnttvvrr, ’mdepth’,
mmddeepptthh, ’lwrk’, llwwrrkk)

Note: the interface to this routine has changed since earlier releases of the toolbox:

At Mark 24: n was made optional

At Mark 23: lwrk was made optional.

3 Description

nag_mip_iqp_dense (h02cb) uses a ‘Branch and Bound’ algorithm in conjunction with nag_opt_qp_
dense_solve (e04nf) to try and determine integer solutions to a general quadratic programming problem.
The problem is assumed to be stated in the following general form:

minimize
x2Rn

f xð Þ subject to l � x
Ax

� �
� u;

where A is an mL by n matrix and f xð Þ may be specified in a variety of ways depending upon the
particular problem to be solved. The available forms for f xð Þ are listed in Table 1, in which the prefixes
FP, LP and QP stand for ‘feasible point’, ‘linear programming’ and ‘quadratic programming’
respectively and c is an n-element vector.

Problem type f xð Þ Matrix H

FP Not applicable Not applicable
LP cTx Not applicable
QP1 1

2x
THx symmetric

QP2 cTxþ 1
2x

THx symmetric
QP3 1

2x
THTHx m by n upper trapezoidal

QP4 cTxþ 1
2x

THTHx m by n upper trapezoidal

Only when the problem is linear or the matrix H is positive definite can the technique be guaranteed to
work; but often useful results can be obtained for a wider class of problems.

The default problem type is QP2 and other objective functions are selected by using the optional
parameter Problem Type. For problems of type FP, the objective function is omitted and
nag_mip_iqp_dense (h02cb) attempts to find a feasible point for the set of constraints.

Branch and bound consists firstly of obtaining a solution without any of the variables
x ¼ x1; x2; . . . ; xnð ÞT constrained to be integer. Suppose x1 ought to be integer, but at the optimal
value just computed x1 ¼ 2:4. A constraint x1 � 2 is added to the system and the second problem
solved. A constraint x1 � 3 gives rise to a third sub-problem. In a similar manner a whole series of sub-
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problems may be generated, corresponding to integer constraints on the variables. The sub-problems are
all solved using nag_opt_qp_dense_solve (e04nf).

In practice the function tries to compute an integer solution as quickly as possible using a depth-first
approach, since this helps determine a realistic cut-off value. If we have a cut-off value, say the value
of the function at this first integer solution, and any sub-problem, W say, has a solution value greater
than this cut-off value, then subsequent sub-problems of W must have solutions greater than the value
of the solution at W and therefore need not be computed. Thus a knowledge of a good cut-off value can
result in fewer sub-problems being solved and thus speed up the operation of the function. (See the
description of monit in Section 5 for details of how you can supply your own cut-off value.)

4 References

Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) Users' guide for LSSOL
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Gill P E, Murray W, Saunders M A and Wright M H (1989) A practical anti-cycling procedure for
linearly constrained optimization Math. Programming 45 437–474

Gill P E, Murray W, Saunders M A and Wright M H (1991) Inertia-controlling methods for general
quadratic programming SIAM Rev. 33 1–36

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Pardalos P M and Schnitger G (1988) Checking local optimality in constrained quadratic programming
is NP-hard Operations Research Letters 7 33–35

5 Parameters

5.1 Compulsory Input Parameters

1: aðlda; :Þ – REAL (KIND=nag_wp) array

The first dimension of the array a must be at least max 1;nclinð Þ.
The second dimension of the array a must be at least n if nclin > 0 and at least 1 if nclin ¼ 0.

The ith row of a must contain the coefficients of the ith general linear constraint, for
i ¼ 1; 2; . . . ;mL.

If nclin ¼ 0, the array a is not referenced.

2: blðnþ nclinÞ – REAL (KIND=nag_wp) array
3: buðnþ nclinÞ – REAL (KIND=nag_wp) array

bl must contain the lower bounds and bu the upper bounds, for all the constraints in the
following order. The first n elements of each array must contain the bounds on the variables, and
the next mL elements the bounds for the general linear constraints (if any). To specify a
nonexistent lower bound (i.e., lj ¼ �1), set blðjÞ � �bigbnd, and to specify a nonexistent upper
bound (i.e., uj ¼ þ1), set buðjÞ � bigbnd; the default value of bigbnd is 1020, but this may be
changed by the Infinite Bound Size. To specify the jth constraint as an equality, set
blðjÞ ¼ buðjÞ ¼ �, say, where �j j < bigbnd.

Constraints:

blðjÞ � buðjÞ, for j ¼ 1; 2; . . . ;nþ nclin;
if blðjÞ ¼ buðjÞ ¼ �, �j j < bigbnd.

h02cb NAG Toolbox for MATLAB Manual

h02cb.2 Mark 25



4: cvecð:Þ – REAL (KIND=nag_wp) array

The dimension of the array cvec must be at least n if the problem is of type LP, QP2 (the default)
or QP4, and at least 1 otherwise

The coefficients of the explicit linear term of the objective function when the problem is of type
LP, QP2 (the default) and QP4.

If the problem is of type FP, QP1, or QP3, cvec is not referenced.

5: hðldh; tdhÞ – REAL (KIND=nag_wp) array

ldh, the first dimension of the array, must satisfy the constraint

if the problem is of type QP1, QP2 (the default), QP3 or QP4, ldh � n or at least the value of the
optional parameter Hessian Rows (default value ¼ n)

if the problem is of type FP or LP, ldh � 1.

May be used to store the quadratic term H of the QP objective function if desired. In some cases,
you need not use h to store H explicitly (see the specification of qphess). The elements of h are
referenced only by qphess. The number of rows of H is denoted by m, whose default value is n.
(The Hessian Rows may be used to specify a value of m < n.)

If the default version of qphess is used and the problem is of type QP1 or QP2 (the default), the
first m rows and columns of h must contain the leading m by m rows and columns of the
symmetric Hessian matrix H. Only the diagonal and upper triangular elements of the leading m
rows and columns of h are referenced. The remaining elements need not be assigned.

If the default version of qphess is used and the problem is of type QP3 or QP4, the first m rows
of h must contain an m by n upper trapezoidal factor of the symmetric Hessian matrix HTH. The
factor need not be of full rank, i.e., some of the diagonal elements may be zero. However, as a
general rule, the larger the dimension of the leading nonsingular sub-matrix of h, the fewer
iterations will be required. Elements outside the upper trapezoidal part of the first m rows of h
need not be assigned.

In other situations, it may be desirable to compute Hx or HTHx without accessing h – for
example, if H or HTH is sparse or has special structure. The arguments h and ldh may then refer
to any convenient array.

If the problem is of type FP or LP, h is not referenced.

6: qphess – SUBROUTINE, supplied by the NAG Library or the user.

In general, you need not provide a version of qphess, because a ‘default’ function with name
nag_opt_qp_dense_sample_qphess (e54nfu) is included in the Library. However, the algorithm of
nag_mip_iqp_dense (h02cb) requires only the product of H or HTH and a vector x; and in some
cases you may obtain increased efficiency by providing a version of qphess that avoids the need
to define the elements of the matrices H or HTH explicitly. qphess is not referenced if the
problem is of type FP or LP, in which case qphess may be the string nag_opt_qp_dense_-

sample_qphess (e54nfu).

[hx] = qphess(n, jthcol, h, ldh, x)

Input Parameters

1: n – INTEGER

This is the same argument n as supplied to nag_mip_iqp_dense (h02cb).
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2: jthcol – INTEGER

Specifies whether or not the vector x is a column of the identity matrix.

jthcol ¼ j > 0
The vector x is the jth column of the identity matrix, and hence Hx or hTHx is
the jth column of h or hTH, respectively, which may in some cases require very
little computation and qphess may be coded to take advantage of this. However
special code is not necessary because x is always stored explicitly in the array x.

jthcol ¼ 0
x has no special form.

3: hðldh; tdhÞ – REAL (KIND=nag_wp) array

This is the same argument h as supplied to nag_mip_iqp_dense (h02cb).

4: ldh – INTEGER

This is the same argument ldh as supplied to nag_mip_iqp_dense (h02cb).

5: xðnÞ – REAL (KIND=nag_wp) array

The vector x.

Output Parameters

1: hxðnÞ – REAL (KIND=nag_wp) array

The product Hx if the problem is of type QP1 or QP2 (the default), or the product
hTHx if the problem is of type QP3 or QP4.

7: intvarðlintvrÞ – INTEGER array

intvarðiÞ must contain the index of the solution vector x which is required to be integer. For
example, if x1 and x3 are constrained to take integer values then intvarð1Þ might be set to 1 and
intvarð2Þ to 3. The order in which the indices are specified is important, since this determines the
order in which the sub-problems are generated. As a rule-of-thumb, the important variables
should always be specified first. Thus, in the above example, if x3 relates to a more important
quantity than x1, then it might be advantageous to set intvarð1Þ ¼ 3 and intvarð2Þ ¼ 1. If k is
the smallest integer such that intvarðkÞ is less than or equal to zero then nag_mip_iqp_dense
(h02cb) assumes that k� 1 variables are constrained to be integer; components intvarðkþ 1Þ,
. . ., intvarðlintvrÞ are not referenced.

8: istateðnþ nclinÞ – INTEGER array

Need not be set if the (default) optional parameter Cold Start is used.

If the optional parameter Warm Start has been chosen, istate specifies the desired status of the
constraints at the start of the feasibility phase. More precisely, the first n elements of istate refer
to the upper and lower bounds on the variables, and the next mL elements refer to the general
linear constraints (if any). Possible values for istateðjÞ are as follows:

istateðjÞ Meaning
0 The corresponding constraint should not be in the initial working set.
1 The constraint should be in the initial working set at its lower bound.
2 The constraint should be in the initial working set at its upper bound.
3 The constraint should be in the initial working set as an equality. This value must not

be specified unless blðjÞ ¼ buðjÞ.

The values �2, �1 and 4 are also acceptable but will be reset to zero by the function. If
nag_mip_iqp_dense (h02cb) has been called previously with the same values of n and nclin,
istate already contains satisfactory information. (See also the description of the optional
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parameter Warm Start.) The function also adjusts (if necessary) the values supplied in xs to be
consistent with istate.

Constraint: �2 � istateðjÞ � 4, for j ¼ 1; 2; . . . ; nþ nclin.

9: xsðnÞ – REAL (KIND=nag_wp) array

An initial estimate of the solution.

10: strtgy – INTEGER

Determines a branching strategy to be used throughout the computation, as follows:

strtgy Meaning
0 Always left branch first, i.e., impose an upper bound constraint on the variable first.
1 Always right branch first, i.e., impose a lower bound constraint on the variable first.
2 Branch towards the nearest integer, i.e., if xk ¼ 2:4 then impose an upper bound

constraint xk � 2, whereas if xk ¼ 2:6 then impose the lower bound constraint xk � 3:0.
3 A random choice is made between a left-hand and a right-hand branch.

Constraint: strtgy ¼ 0, 1, 2 or 3.

11: monit – SUBROUTINE, supplied by the NAG Library or the user.

monit may be used to print out intermediate output and to affect the course of the computation.
Specifically, it allows you to specify a realistic value for the cut-off value (see Section 3) and to
terminate the algorithm. If you do not require any intermediate output, have no estimate of the
cut-off value and require an exhaustive tree search then monit may be the string nag_mi-

p_iqp_dense_dummy_monit (h02cbu).

[bstval, halt, count] = monit(intfnd, nodes, depth, obj, x, bstval,
bstsol, bl, bu, n, halt, count)

Input Parameters

1: intfnd – INTEGER

Specifies the number of integer solutions obtained so far.

2: nodes – INTEGER

Specifies the number of nodes (sub-problems) solved so far.

3: depth – INTEGER

Specifies the depth in the tree of sub-problems the algorithm has now reached.

4: obj – REAL (KIND=nag_wp)

Specifies the value of the objective function of the end of the latest sub-problem.

5: xðnÞ – REAL (KIND=nag_wp) array

Specifies the values of the independent variables at the end of the latest sub-problem.

6: bstval – REAL (KIND=nag_wp)

Normally specifies the value of the best integer solution found so far.

7: bstsolðnÞ – REAL (KIND=nag_wp) array

Specifies the solution vector which gives rise to the best integer solution value so far
discovered.
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8: blðnÞ – REAL (KIND=nag_wp) array

blðiÞ specifies the current lower bounds on the variable xi.

9: buðnÞ – REAL (KIND=nag_wp) array

buðiÞ specifies the current upper bounds on the variable xi.

10: n – INTEGER

Specifies the number of variables.

11: halt – LOGICAL

Will have the value false.

12: count – INTEGER

Unchanged from previous call.

Output Parameters

1: bstval – REAL (KIND=nag_wp)

May be set a cut-off value if you are an experienced user as follows. Before an integer
solution has been found bstval will be set by nag_mip_iqp_dense (h02cb) to the largest
machine representable number (see nag_machine_real_largest (x02al)). If you know that
the solution being sought is a much smaller number, then bstval may be set to this
number as a cut-off value (see Section 3). Beware of setting bstval too small, since then
no integer solutions will be discovered. Also make sure that bstval is set using a
statement of the form

IF (iinnttffnndd.EQ.0) bstval ¼ cut-off value

on entry to monit. This statement will not prevent the normal operation of the
algorithm when subsequent integer solutions are found. It would be a grievous mistake
to unconditionally set bstval and if you have any doubts whatsoever about the correct
use of this argument then you are strongly recommended to leave it unchanged.

2: halt – LOGICAL

If halt is set to true, nag_opt_qp_dense_solve (e04nf) will be brought to a halt with
ifail ¼ �1. This facility may be useful if you are content with any integer solution, or
with any integer solution that fits certain criteria. Under these circumstances setting
halt ¼ true can save considerable unnecessary computation.

3: count – INTEGER

May be used by you to save the last value of intfnd. If a subsequent call of monit has a
value of intfnd which is greater than count, then you know that a new integer solution
has been found at this node.

5.2 Optional Input Parameters

1: n – INTEGER

Default: the dimension of the arrays bl, bu, cvec, xs. (An error is raised if these dimensions are
not equal.)

n, the number of variables.

Constraint: n > 0.
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2: nclin – INTEGER

Default: the first dimension of the array a.

mL, the number of general linear constraints.

Constraint: nclin � 0.

3: lintvr – INTEGER

Default: the dimension of the array intvar.

The dimension of the array intvar. often lintvr is the number of variables that are constrained to
be integer.

Constraint: lintvr > 0.

4: mdepth – INTEGER

Suggested value: mdepth ¼ 3� n=2.

Default: 3� n=2

The maximum depth (i.e., number of extra constraints) that nag_mip_iqp_dense (h02cb) may
insert before admitting failure.

Constraint: mdepth � 1.

5: lwrk – INTEGER

Suggested value: Note that this is an over-estimate for many problems so if there are a large
number of variables or constraints then the user may wish to choose a smaller value for lwrk
based on the formula given above.

Default: 2�max n; nclinþ 1ð Þð Þ2 þ 9� nþ 5� nclinþ 4�mdepth

The dimension of the array wrk.

Constraints:

if the problem type is QP2 (the default) or QP4,

if nclin > 0, lwrk � 2� n2 þ 9� nþ 5� nclinþ 4�mdepth;
if nclin ¼ 0, lwrk � n2 þ 9� nþ 4�mdepth.;

if the problem type is QP1 or QP3,

if nclin > 0, lwrk � 2� n2 þ 8� nþ 5� nclinþ 4�mdepth;
if nclin ¼ 0, lwrk � n2 þ 8� nþ 4�mdepth.;

if the problem type is LP,

if nclin ¼ 0, lwrk � 9� nþ 1þ 4�mdepth;
if nclin � n, lwrk � 2� n2 þ 9� nþ 5� nclinþ 4�mdepth;
otherwise lwrk � 2� nclinþ 1ð Þ2 þ 9� nþ 5� nclinþ 4�mdepth.;

if the problem type is FP,

if nclin ¼ 0, lwrk � 8� nþ 1þ 4�mdepth;
if nclin � n, lwrk � 2� n2 þ 8� nþ 5� nclinþ 4�mdepth;
otherwise lwrk � 2� nclinþ 1ð Þ2 þ 8� nþ 5� nclinþ 4�mdepth..

5.3 Output Parameters

1: istateðnþ nclinÞ – INTEGER array

The status of the constraints in the working set at the point returned in xs. The significance of
each possible value of istateðjÞ is as follows:
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istateðjÞ Meaning
�2 The constraint violates its lower bound by more than the feasibility tolerance.
�1 The constraint violates its upper bound by more than the feasibility tolerance.
0 The constraint is satisfied to within the feasibility tolerance, but is not in the working

set.
1 This inequality constraint is included in the working set at its lower bound.
2 This inequality constraint is included in the working set at its upper bound.
3 This constraint is included in the working set as an equality. This value of istate can

occur only when blðjÞ ¼ buðjÞ.
4 This corresponds to optimality being declared with xsðjÞ being temporarily fixed at its

current value. This value of istate can occur only when ifail ¼ 1 on exit.

2: xsðnÞ – REAL (KIND=nag_wp) array

The point at which nag_mip_iqp_dense (h02cb) terminated. If ifail ¼ 0, 1 or 3, xs contains an
estimate of the solution.

3: obj – REAL (KIND=nag_wp)

The value of the objective function at x if x is feasible, or the sum of infeasibilities at x
otherwise. If the problem is of type FP and x is feasible, obj is set to zero.

4: axðmax 1;nclinð ÞÞ – REAL (KIND=nag_wp) array

The final values of the linear constraints Ax.

If nclin ¼ 0, ax is not referenced.

5: clamdaðnþ nclinÞ – REAL (KIND=nag_wp) array

The values of the Lagrange-multipliers for each constraint with respect to the current working
set. The first n elements contain the multipliers for the bound constraints on the variables, and
the next mL elements contain the multipliers for the general linear constraints (if any). If
istateðjÞ ¼ 0 (i.e., constraint j is not in the working set), clamdaðjÞ is zero. If x is optimal,
clamdaðjÞ should be non-negative if istateðjÞ ¼ 1, non-positive if istateðjÞ ¼ 2 and zero if
istateðjÞ ¼ 4.

6: ifail – INTEGER

ifail ¼ 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail ¼ �1 (warning)

Algorithm terminated at your request (halt ¼ true).

ifail ¼ 1

Input argument error immediately detected.

ifail ¼ 2

No integer solution found. (Check that bstval has not been set too small.)

ifail ¼ 3

mdepth is too small. Increase the value of mdepth and re-enter nag_mip_iqp_dense (h02cb).
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ifail ¼ 4

The basic problem (without integer constraints) is unbounded.

ifail ¼ 5

The basic problem is infeasible.

ifail ¼ 6

The basic problem requires too many iterations.

ifail ¼ 7

The basic problem has a reduced Hessian which exceeds its assigned dimension.

ifail ¼ 8

The basic problem has an invalid argument setting.

ifail ¼ 9

The basic problem, as defined, is not standard.

ifail ¼ 10

liwrk is too small.

ifail ¼ 11

lwrk is too small.

ifail ¼ 12

An internal error has occurred within the function. Please contact NAG with details of the call to
nag_mip_iqp_dense (h02cb).

ifail ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail ¼ �399

Your licence key may have expired or may not have been installed correctly.

ifail ¼ �999

Dynamic memory allocation failed.

7 Accuracy

nag_mip_iqp_dense (h02cb) implements a numerically stable active set strategy and returns solutions
that are as accurate as the condition of the problem warrants on the machine.

8 Further Comments

This section contains some comments on scaling and a description of the printed output.

8.1 Scaling

Sensible scaling of the problem is likely to reduce the number of iterations required and make the
problem less sensitive to perturbations in the data, thus improving the condition of the problem. In the
absence of better information it is usually sensible to make the Euclidean lengths of each constraint of
comparable magnitude. See Chapter E04 and Gill et al. (1981) for further information and advice.
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8.2 Description of the Printed Output

This section describes the (default) intermediate printout and final printout produced by nag_mip_
iqp_dense (h02cb). The intermediate printout is a subset of the monitoring information produced by the
function at every iteration (see Section 13). You can control the level of printed output (see the
description of the Print Level in Section 12.1). Note that the intermediate printout and final printout are
produced only if Print Level � 10 (the default).

The following line of summary output ( < 80 characters) is produced at every iteration. In all cases, the
values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step taken along the computed search direction. If a constraint is added
during the current iteration, Step will be the step to the nearest constraint. When
the problem is of type LP, the step can be greater than one during the optimality
phase.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible,
Objective is the value of the objective function. The output line for the final
iteration of the feasibility phase (i.e., the first iteration for which Ninf is zero)
will give the value of the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be
nonincreasing. During the feasibility phase, the number of constraint infeasi-
bilities will not increase until either a feasible point is found, or the optimality of
the multipliers implies that no feasible point exists. Once optimal multipliers are
obtained, the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

Norm Gz is ZT
RgFR

�� ��, the Euclidean norm of the reduced gradient with respect to ZR (see
Section 11.2 and Section 11.4). During the optimality phase, this norm will be
approximately zero after a unit step.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

A key is sometimes printed before State to give some additional information about the state of a
variable.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n, of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if
temporarily fixed at its current value). If Value lies outside the upper or lower
bounds by more than the Feasibility Tolerance (default value ¼ ffiffi

�
p

, where � is
the machine precision; see Section 12.1), State will be ++ or -- respectively.

A Alternative optimum possible. The variable is active at one of its bounds,
but its Lagrange-multiplier is essentially zero. This means that if the
variable were allowed to start moving away from its bound, there would be
no change to the objective function. The values of the other free variables
might change, giving a genuine alternative solution. However, if there are
any degenerate variables (labelled D), the actual change might prove to be
zero, since one of them could encounter a bound immediately. In either
case the values of the Lagrange-multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.
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I Infeasible. The variable is currently violating one of its bounds by more
than the Feasibility Tolerance.

Value is the value of the variable at the final iterate.

Lower Bound is the lower bound specified for the variable. None indicates that
blðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that buðjÞ � bigbnd.

Slack is the difference between the variable Value and the nearer of its (finite) bounds
blðjÞ and buðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., blðjÞ � �bigbnd and buðjÞ � bigbnd).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, blðjÞ and buðjÞ are replaced by blðnþ jÞ and buðnþ jÞ
respectively, and with the following change in the heading.

L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ;m, of the constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

9 Example

This example minimizes the quadratic function f xð Þ ¼ cTxþ 1
2x

THx , where

c ¼ �0:02;�0:2;�0:2;�0:2;�0:2; 0:04; 0:04ð ÞT

h ¼

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 �2 �2
0 0 0 0 0 �2 �2

0
BBBBBBB@

1
CCCCCCCA

subject to the bounds

�0:01 � x1 � 0:01
�0:1 � x2 � 0:15
�0:01 � x3 � 0:03
�0:04 � x4 � 0:02
�0:1 � x5 � 0:05
�0:01 � x6
�0:01 � x7

to the general constraints

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ �0:13
0:15x1 þ 0:04x2 þ 0:02x3 þ 0:04x4 þ 0:02x5 þ 0:01x6 þ 0:03x7 � �0:0049
0:03x1 þ 0:05x2 þ 0:08x3 þ 0:02x4 þ 0:06x5 þ 0:01x6 � �0:0064
0:02x1 þ 0:04x2 þ 0:01x3 þ 0:02x4 þ 0:02x5 � �0:0037
0:02x1 þ 0:03x2 þ 0:01x5 � �0:0012

�0:0992 � 0:70x1 þ 0:75x2 þ 0:80x3 þ 0:75x4 þ 0:80x5 þ 0:97x6
�0:003 � 0:02x1 þ 0:06x2 þ 0:08x3 þ 0:12x4 þ 0:02x5 þ 0:01x6 þ 0:97x7 � 0:002

and the variable x4 is constrained to be integer.

The initial point, which is infeasible, is

x0 ¼ �0:01;�0:03; 0:0;�0:01;�0:1; 0:02; 0:01ð ÞT:
The optimal solution (to five figures) is
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x� ¼ �0:01;�0:073328;�0:00025809; 0:0;�0:063354; 0:014109; 0:0028312ð ÞT:

9.1 Program Text

function h02cb_example

fprintf(’h02cb example results\n\n’);

big = 1e25;
a = [ 1, 1, 1, 1, 1, 1, 1;

0.15, 0.04, 0.02, 0.04, 0.02, 0.01, 0.03;
0.03, 0.05, 0.08, 0.02, 0.06, 0.01, 0.00;
0.02, 0.04, 0.01, 0.02, 0.02, 0.00, 0.00;
0.02, 0.03, 0.00, 0.00, 0.01, 0.00, 0.00;
0.70, 0.75, 0.80, 0.75, 0.80, 0.97, 0.00;
0.02, 0.06, 0.08, 0.12, 0.02, 0.01, 0.97];

cvec = [-0.02, -0.20, -0.20, -0.20, -0.20, 0.04, 0.04];
bl = [-0.01, -0.10, -0.01, -0.04, -0.10, -0.01, -0.01, ...

-0.13, -big, -big, -big, -big, -0.0992, -0.003];
bu = [ 0.01, 0.15, 0.03, 0.02, 0.05, big, big, ...

-0.13, -0.0049,-0.0064,-0.0037,-0.0012, big, 0.002];
h = [ 2, 0, 0, 0, 0, 0, 0;

0, 2, 0, 0, 0, 0, 0;
0, 0, 2, 2, 0, 0, 0;
0, 0, 2, 2, 0, 0, 0;
0, 0, 0, 0, 2, 0, 0;
0, 0, 0, 0, 0, -2, -2;
0, 0, 0, 0, 0, -2, -2];

xs = [-0.01, 0.03, 0, -0.01, -0.1, 0.02, 0.01];
intvar = [nag_int(4)];
istate = zeros(14, 1, nag_int_name);
strtgy = nag_int(2);

[istate, xs, obj, ax, clamda, ifail] = ...
h02cb( ...

a, bl, bu, cvec, h, @qphess, intvar, istate, xs, strtgy, @monit);

fprintf(’Optimal Integer Value is = %20.8e\n’,obj);
disp(’Components are:’);
for j=1:7

fprintf(’x(%2d) = %12.8f\n’,j,xs(j));
end

function [hx] = qphess(n, jthcol, h, ldh, x)
hx = h*x;

function [bstval, halt, count] = monit(intfnd, nodes, depth, obj, x, ...
bstval, bstsol, bl, bu, n, halt, count)

9.2 Program Results

h02cb example results

Optimal Integer Value is = 3.74696620e-02
Components are:
x( 1) = -0.01000000
x( 2) = -0.07332830
x( 3) = -0.00025809
x( 4) = 0.00000000
x( 5) = -0.06335433
x( 6) = 0.01410944
x( 7) = 0.00283128

Note: the remainder of this document is intended for more advanced users. Section 11 contains a
detailed description of the algorithm which may be needed in order to understand Section 12 and
Section 13. Section 12 describes the optional parameters which may be set by calls to
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nag_mip_iqp_dense_optstr (h02cd). Section 13 describes the quantities which can be requested to
monitor the course of the computation.

10 Algorithmic Details

nag_mip_iqp_dense (h02cb) implements a basic branch and bound algorithm (see Section 3) using
nag_opt_qp_dense_solve (e04nf) as its basic sub-problem solver. See below for details of its algorithm.

10.1 Overview

nag_mip_iqp_dense (h02cb) is based on an inertia-controlling method that maintains a Cholesky
factorization of the reduced Hessian (see below). The method is based on that of Gill and Murray
(1978), and is described in detail by Gill et al. (1991). Here we briefly summarise the main features of
the method. Where possible, explicit reference is made to the names of variables that are arguments of
nag_mip_iqp_dense (h02cb) or appear in the printed output. nag_mip_iqp_dense (h02cb) has two
phases:

(i) finding an initial feasible point by minimizing the sum of infeasibilities (the feasibility phase), and

(ii) minimizing the quadratic objective function within the feasible region (the optimality phase).

The computations in both phases are performed by the same functions. The two-phase nature of the
algorithm is reflected by changing the function being minimized from the sum of infeasibilities to the
quadratic objective function. The feasibility phase does not perform the standard simplex method (i.e.,
it does not necessarily find a vertex), except in the LP case when mL � n. Once any iterate is feasible,
all subsequent iterates remain feasible.

nag_mip_iqp_dense (h02cb) has been designed to be efficient when used to solve a sequence of related
problems – for example, within a sequential quadratic programming method for nonlinearly constrained
optimization (e.g., nag_opt_nlp2_solve (e04wd)). In particular, you may specify an initial working set
(the indices of the constraints believed to be satisfied exactly at the solution); see the discussion of the
Warm Start in Section 12.1.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we shall
always consider a typical iteration and avoid reference to the index of the iteration.) Each new iterate �x
is defined by

�x ¼ xþ �p ð1Þ
where the step length � is a non-negative scalar, and p is called the search direction.

At each point x, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the tolerance defined by the Feasibility Tolerance; see
Section 12.1). The working set is the current prediction of the constraints that hold with equality at the
solution of a linearly constrained QP problem. The search direction is constructed so that the constraints
in the working set remain unaltered for any value of the step length. For a bound constraint in the
working set, this property is achieved by setting the corresponding element of the search direction to
zero. Thus, the associated variable is fixed, and specification of the working set induces a partition of x
into fixed and free variables. During a given iteration, the fixed variables are effectively removed from
the problem; since the relevant elements of the search direction are zero, the columns of A
corresponding to fixed variables may be ignored.

Let mW denote the number of general constraints in the working set and let nFX denote the number of
variables fixed at one of their bounds (mW and nFX are the quantities Lin and Bnd in the monitoring file
output from nag_mip_iqp_dense (h02cb); see Section 13). Similarly, let nFR (nFR ¼ n� nFX) denote the
number of free variables. At every iteration, the variables are reordered so that the last nFX variables
are fixed, with all other relevant vectors and matrices ordered accordingly.

10.2 Definition of the Search Direction

Let AFR denote the mW by nFR sub-matrix of general constraints in the working set corresponding to
the free variables, and let pFR denote the search direction with respect to the free variables only. The
general constraints in the working set will be unaltered by any move along p if
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AFRpFR ¼ 0: ð2Þ
In order to compute pFR, the TQ factorization of AFR is used:

AFRQFR ¼ 0 Tð Þ; ð3Þ
where T is a nonsingular mW by mW upper triangular matrix (i.e., tij ¼ 0 if i > j), and the nonsingular
nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al. (1984)). If the
columns of QFR are partitioned so that

QFR ¼ Z Yð Þ;
where Y is nFR by mW, then the nZ nZ ¼ nFR �mWð Þ columns of Z form a basis for the null space of
AFR. Let nR be an integer such that 0 � nR � nZ , and let ZR denote a matrix whose nR columns are a
subset of the columns of Z. (The integer nR is the quantity Zr in the monitoring output from
nag_mip_iqp_dense (h02cb). In many cases, ZR will include all the columns of Z.) The direction pFR
will satisfy (2) if

pFR ¼ ZRpR; ð4Þ
where pR is any nR-vector.

Let Q denote the n by n matrix

Q ¼ QFR
IFX

� �
;

where IFX is the identity matrix of order nFX. Let HQ and gQ denote the n by n transformed Hessian
and transformed gradient

HQ ¼ QTHQ and gQ ¼ QT cþHxð Þ
and let the matrix of first nR rows and columns of HQ be denoted by HR and the vector of the first nR

elements of gQ be denoted by gR. The quantities HR and gR are known as the reduced Hessian and
reduced gradient of f xð Þ, respectively. Roughly speaking, gR and HR describe the first and second
derivatives of an unconstrained problem for the calculation of pR.

At each iteration, a triangular factorization of HR is available. If HR is positive definite, HR ¼ RTR,
where R is the upper triangular Cholesky factor of HR. If HR is not positive definite, HR ¼ RTDR,
where D ¼ diag 1; 1; . . . ; 1; �ð Þ, with � � 0.

The computation is arranged so that the reduced-gradient vector is a multiple of eR, a vector of all zeros
except in the last (i.e., nRth) position. This allows the vector pR in (4) to be computed from a single
back-substitution

RpR ¼ �eR ð5Þ
where � is a scalar that depends on whether or not the reduced Hessian is positive definite at x. In the
positive definite case, xþ p is the minimizer of the objective function subject to the constraints (bounds
and general) in the working set treated as equalities. If HR is not positive definite, pR satisfies the
conditions

pTRHRpR < 0 and gTRpR � 0;

which allow the objective function to be reduced by any positive step of the form xþ �p.

10.3 The Main Iteration

If the reduced gradient is zero, x is a constrained stationary point in the subspace defined by Z. During
the feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero
at non-vertices in the presence of constraint dependencies). During the optimality phase, a zero reduced
gradient implies that x minimizes the quadratic objective when the constraints in the working set are
treated as equalities. At a constrained stationary point, Lagrange-multipliers �C and �B for the general
and bound constraints are defined from the equations
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AT
FR�C ¼ gFR and �B ¼ gFX �AT

FX�C: ð6Þ
Given a positive constant � of the order of the machine precision, a Lagrange-multiplier �j

corresponding to an inequality constraint in the working set is said to be optimal if �j � � when the
associated constraint is at its upper bound, or if �j � �� when the associated constraint is at its lower
bound. If a multiplier is nonoptimal, the objective function (either the true objective or the sum of
infeasibilities) can be reduced by deleting the corresponding constraint (with index Jdel; see
Section 13) from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero, there
is no feasible point, and you can force nag_mip_iqp_dense (h02cb) to continue until the minimum value
of the sum of infeasibilities has been found; see the discussion of the Minimum Sum of Infeasibilities
in Section 12.1. At such a point, the Lagrange-multiplier �j corresponding to an inequality constraint in
the working set will be such that � 1þ �ð Þ � �j � � when the associated constraint is at its upper
bound, and �� � �j � 1þ �ð Þ when the associated constraint is at its lower bound. Lagrange-
multipliers for equality constraints will satisfy �j

�� �� � 1þ �.

If the reduced gradient is not zero, Lagrange-multipliers need not be computed and the nonzero
elements of the search direction p are given by ZRpR (see (4) and (5)). The choice of step length is
influenced by the need to maintain feasibility with respect to the satisfied constraints. If HR is positive
definite and xþ p is feasible, � will be taken as unity. In this case, the reduced gradient at �x will be
zero, and Lagrange-multipliers are computed. Otherwise, � is set to �M, the step to the ‘nearest’
constraint (with index Jadd; see Section 13), which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to AFR: if the status of a general constraint
changes, a row of AFR is altered; if a bound constraint enters or leaves the working set, a column of
AFR changes. Explicit representations are recurred of the matrices T , QFR and R; and of vectors QTg,
and QTc. The triangular factor R associated with the reduced Hessian is only updated during the
optimality phase.

One of the most important features of nag_mip_iqp_dense (h02cb) is its control of the conditioning of
the working set, whose nearness to linear dependence is estimated by the ratio of the largest to smallest
diagonal elements of the TQ factor T (the printed value Cond T; see Section 13). In constructing the
initial working set, constraints are excluded that would result in a large value of Cond T.

nag_mip_iqp_dense (h02cb) includes a rigorous procedure that prevents the possibility of cycling at a
point where the active constraints are nearly linearly dependent (see Gill et al. (1989)). The main
feature of the anti-cycling procedure is that the feasibility tolerance is increased slightly at the start of
every iteration. This not only allows a positive step to be taken at every iteration, but also provides,
whenever possible, a choice of constraints to be added to the working set. Let �M denote the maximum
step at which xþ �Mp does not violate any constraint by more than its feasibility tolerance. All
constraints at a distance � (� � �M) along p from the current point are then viewed as acceptable
candidates for inclusion in the working set. The constraint whose normal makes the largest angle with
the search direction is added to the working set.

10.4 Choosing the Initial Working Set

At the start of the optimality phase, a positive definite HR can be defined if enough constraints are
included in the initial working set. (The matrix with no rows and columns is positive definite by
definition, corresponding to the case when AFR contains nFR constraints.) The idea is to include as
many general constraints as necessary to ensure that the reduced Hessian is positive definite.

Let HZ denote the matrix of the first nZ rows and columns of the matrix HQ ¼ QTHQ at the beginning
of the optimality phase. A partial Cholesky factorization is used to find an upper triangular matrix R
that is the factor of the largest positive definite leading sub-matrix of HZ . The use of interchanges
during the factorization of HZ tends to maximize the dimension of R. (The condition of R may be
controlled using the Rank Tolerance. Let ZR denote the columns of Z corresponding to R, and let Z
be partitioned as Z ¼ ZR ZA

� �
. A working set for which ZR defines the null space can be obtained

by including the rows of ZT
A as ‘artificial constraints’. Minimization of the objective function then

proceeds within the subspace defined by ZR, as described in Section 11.2.
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The artificially augmented working set is given by

�AFR ¼ ZT
A

AFR

� �
; ð7Þ

so that pFR will satisfy AFRpFR ¼ 0 and ZT
ApFR ¼ 0. By definition of the TQ factorization, �AFR

automatically satisfies the following:

�AFRQFR ¼ ZT
A

AFR

� �
QFR ¼ ZT

A
AFR

� �
ZR ZA Y

� � ¼ 0 �T
� �

;

where

�T ¼ I 0
0 T

� �
;

and hence the TQ factorization of (7) is available trivially from T and QFR without additional expense.

The matrix ZA is not kept fixed, since its role is purely to define an appropriate null space; the TQ
factorization can therefore be updated in the normal fashion as the iterations proceed. No work is
required to ‘delete’ the artificial constraints associated with ZA when ZT

RgFR ¼ 0, since this simply
involves repartitioning QFR. The ‘artificial’ multiplier vector associated with the rows of ZT

A is equal to
ZT
AgFR, and the multipliers corresponding to the rows of the ‘true’ working set are the multipliers that

would be obtained if the artificial constraints were not present. If an artificial constraint is ‘deleted’
from the working set, an A appears alongside the entry in the Jdel column of the monitoring file output
(see Section 13).

The number of columns in ZA and ZR, the Euclidean norm of ZT
RgFR, and the condition estimator of R

appear in the monitoring file output as Art, Zr, Norm Gz and Cond Rz respectively (see Section 13).

Under some circumstances, a different type of artificial constraint is used when solving a linear
program. Although the algorithm of nag_mip_iqp_dense (h02cb) does not usually perform simplex
steps (in the traditional sense), there is one exception: a linear program with fewer general constraints
than variables (i.e., mL � n). (Use of the simplex method in this situation leads to savings in storage.)
At the starting point, the ‘natural’ working set (the set of constraints exactly or nearly satisfied at the
starting point) is augmented with a suitable number of ‘temporary’ bounds, each of which has the effect
of temporarily fixing a variable at its current value. In subsequent iterations, a temporary bound is
treated as a standard constraint until it is deleted from the working set, in which case it is never added
again. If a temporary bound is ‘deleted’ from the working set, an F (for ‘Fixed’) appears alongside the
entry in the Jdel column of the monitoring file output (see Section 13).

11 Optional Parameters

Several optional parameters in nag_mip_iqp_dense (h02cb) define choices in the problem specification
or the algorithm logic. In order to reduce the number of formal arguments of nag_mip_iqp_dense
(h02cb) these optional parameters have associated default values that are appropriate for most problems.
Therefore, you need only specify those optional parameters whose values are to be different from their
default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Check Frequency

Cold Start

Crash Tolerance

Defaults

Expand Frequency

Feasibility Phase Iteration Limit
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Feasibility Tolerance

Hessian Rows

Infinite Bound Size

Infinite Step Size

Iteration Limit

Iters

Itns

List

Maximum Degrees of Freedom

Minimum Sum of Infeasibilities

Monitoring File

Nolist

Optimality Phase Iteration Limit

Optimality Tolerance

Print Level

Problem Type

Rank Tolerance

Warm Start

Optional parameters may be specified by calling nag_mip_iqp_dense_optstr (h02cd) prior to a call to
nag_mip_iqp_dense (h02cb).

nag_mip_iqp_dense_optstr (h02cd) can be called to supply options directly, one call being necessary for
each optional parameter. For example,

h02cd(’Print Level = 5’)

nag_mip_iqp_dense_optstr (h02cd) should be consulted for a full description of this method of
supplying optional parameters.

All optional parameters not specified by you are set to their default values. Optional parameters
specified by you are unaltered by nag_mip_iqp_dense (h02cb) (unless they define invalid values) and so
remain in effect for subsequent calls unless altered by you.

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters
of an optional qualifier are underlined, the qualifier may be omitted);

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see
nag_machine_precision (x02aj)).

Keywords and character values are case and white space insensitive.

Check Frequency i Default ¼ 50

Every ith iteration, a numerical test is made to see if the current solution x satisfies the constraints in
the working set. If the largest residual of the constraints in the working set is judged to be too large, the
current working set is refactorized and the variables are recomputed to satisfy the constraints more
accurately. If i � 0, the default value is used.
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Cold Start Default
Warm Start

This option specifies how the initial working set is chosen. With a Cold Start, nag_mip_iqp_dense
(h02cb) chooses the initial working set based on the values of the variables and constraints at the initial
point. Broadly speaking, the initial working set will include equality constraints and bounds or
inequality constraints that violate or ‘nearly’ satisfy their bounds (to within Crash Tolerance).

With a Warm Start, you must provide a valid definition of every element of the array istate (see
Section 5 for the definition of this array). nag_mip_iqp_dense (h02cb) will override your specification
of istate if necessary, so that a poor choice of the working set will not cause a fatal error. For instance,
any elements of istate which are set to �2, �1 or 4 will be reset to zero, as will any elements which
are set to 3 when the corresponding elements of bl and bu are not equal. A warm start will be
advantageous if a good estimate of the initial working set is available – for example, when
nag_mip_iqp_dense (h02cb) is called repeatedly to solve related problems.

Crash Tolerance r Default ¼ 0:01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
nag_mip_iqp_dense (h02cb) selects an initial working set. If 0 � r � 1, the initial working set will
include (if possible) bounds or general inequality constraints that lie within r of their bounds. In
particular, a constraint of the form aTj x � l will be included in the initial working set if

aTj x� l
��� ��� � r 1þ lj jð Þ. If r < 0 or r > 1, the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Expand Frequency i Default ¼ 5

This option is part of an anti-cycling procedure designed to guarantee progress even on highly
degenerate problems.

The strategy is to force a positive step at every iteration, at the expense of violating the constraints by a
small amount. Suppose that the value of the optional parameter Feasibility Tolerance is �. Over a
period of i iterations, the feasibility tolerance actually used by nag_mip_iqp_dense (h02cb) (i.e., the
working feasibility tolerance) increases from 0:5� to � (in steps of 0:5�=i).

At certain stages the following ‘resetting procedure’ is used to remove constraint infeasibilities. First,
all variables whose upper or lower bounds are in the working set are moved exactly onto their bounds.
A count is kept of the number of nontrivial adjustments made. If the count is positive, iterative
refinement is used to give variables that satisfy the working set to (essentially) machine precision.
Finally, the working feasibility tolerance is reinitialized to 0:5�.

If a problem requires more than i iterations, the resetting procedure is invoked and a new cycle of i
iterations is started with i incremented by 10. (The decision to resume the feasibility phase or optimality
phase is based on comparing any constraint infeasibilities with �.)

The resetting procedure is also invoked when nag_mip_iqp_dense (h02cb) reaches an apparently
optimal, infeasible or unbounded solution, unless this situation has already occurred twice. If any
nontrivial adjustments are made, iterations are continued.

If i � 0, the default value is used. If i � 9999999, no anti-cycling procedure is invoked.

Feasibility Phase Iteration Limit i1 Default ¼ max 50; 5 nþmLð Þð Þ
Optimality Phase Iteration Limit i2 Default ¼ max 50; 5 nþmLð Þð Þ
The scalars i1 and i2 specify the maximum number of iterations allowed in the feasibility and optimality
phases. Optimality Phase Iteration Limit is equivalent to Iteration Limit. Setting i1 ¼ 0 and
Print Level > 0 means that the workspace needed will be computed and printed, but no iterations will
be performed. If i1 < 0 or i2 < 0, the default value is used.
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Feasibility Tolerance r Default ¼ ffiffi
�

p

If r � �, r defines the maximum acceptable absolute violation in each constraint at a ‘feasible’ point.
For example, if the variables and the coefficients in the general constraints are of order unity, and the
latter are correct to about 6 decimal digits, it would be appropriate to specify r as 10�6. If 0 � r < �,
the default value is used.

nag_mip_iqp_dense (h02cb) attempts to find a feasible solution before optimizing the objective
function. If the sum of infeasibilities cannot be reduced to zero, the Minimum Sum of Infeasibilities
can be used to find the minimum value of the sum. Let Sinf be the corresponding sum of
infeasibilities. If Sinf is quite small, it may be appropriate to raise r by a factor of 10 or 100.
Otherwise, some error in the data should be suspected.

Note that a ‘feasible solution’ is a solution that satisfies the current constraints to within the tolerance r.

Hessian Rows i Default ¼ n

Note that this option does not apply to problems of type FP or LP.

This specifies m, the number of rows of the Hessian matrix H. The default value of m is n, the number
of variables of the problem.

If the problem is of type QP, m will usually be n, the number of variables. However, a value of m less
than n is appropriate for QP3 or QP4 if h is an upper trapezoidal matrix with m rows. Similarly, m may
be used to define the dimension of a leading block of nonzeros in the Hessian matrices of QP1 or QP2,
in which case the last n�m rows and columns of h are assumed to be zero. In the QP case, m should
not be greater than n; if it is, the last m� n rows of h are ignored.

If i < 0 or i > n, the default value is used.

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than
or equal to �bigbnd will be regarded as �1). If r � 0, the default value is used.

Infinite Step Size r Default ¼ max bigbnd; 1020
� �

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to an
unbounded solution. (Note that an unbounded solution can occur only when the Hessian is not positive
definite.) If the change in x during an iteration would exceed the value of r, the objective function is
considered to be unbounded below in the feasible region. If r � 0, the default value is used.

Iteration Limit i Default ¼ max 50; 5 nþmLð Þð Þ
Iters
Itns

See optional parameter Feasibility Phase Iteration Limit.

List Default
Nolist

Normally each optional parameter specification is printed as it is supplied. Optional parameter Nolist
may be used to suppress the printing and optional parameter List may be used to restore printing.

Maximum Degrees of Freedom i Default ¼ n

Note that this option does not apply to problems of type FP or LP.

This places a limit on the storage allocated for the triangular factor R of the reduced Hessian HR.
Ideally, i should be set slightly larger than the value of nR expected at the solution. It need not be larger
than mn þ 1, where mn is the number of variables that appear nonlinearly in the quadratic objective
function. For many problems it can be much smaller than mn.
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For quadratic problems, a minimizer may lie on any number of constraints, so that nR may vary
between 1 and n. The default value of i is therefore the number of variables n. If Hessian Rows m is
specified, the default value of i is the same number, m.

Minimum Sum of Infeasibilities Default ¼ NO

If no feasible point exists for the constraints, this option is used to control whether or not
nag_mip_iqp_dense (h02cb) will calculate a point that minimizes the constraint violations. If
Minimum Sum of Infeasibilities ¼ NO, nag_mip_iqp_dense (h02cb) will terminate as soon as it is
evident that no feasible point exists for the constraints. The final point will generally not be the point at
which the sum of infeasibilities is minimized. If Minimum Sum of Infeasibilities ¼ YES, nag_mip_
iqp_dense (h02cb) will continue until the sum of infeasibilities is minimized.

Monitoring File i Default ¼ �1

If i � 0 and Print Level � 5, monitoring information produced by nag_mip_iqp_dense (h02cb) at every
iteration is sent to a file with logical unit number i. If i < 0 and/or Print Level < 5, no monitoring
information is produced.

Optimality Tolerance r Default ¼ �0:8

If r � �, r defines the tolerance used to determine if the bounds and general constraints have the right
‘sign’ for the solution to be judged to be optimal.

If 0 � r < �, the default value is used.

Print Level i Default ¼ 10

The value of i controls the amount of printout produced by nag_mip_iqp_dense (h02cb), as indicated
below. A detailed description of the printed output is given in Section 9.2 (summary output at each
iteration and the final solution) and Section 13 (monitoring information at each iteration). If i < 0, the
default value is used.

The following printout is sent to the current advisory message unit (as defined by nag_file_set_unit_
advisory (x04ab)):

i Output
0 No output.
1 The final solution only.
5 One line of summary output ( < 80 characters; see Section 9.2) for each iteration (no printout

of the final solution).
� 10 The final solution and one line of summary output for each iteration.

The following printout is sent to the logical unit number defined by the Monitoring File:

i Output
< 5 No output.
� 5 One long line of output ( > 80 characters; see Section 13) for each iteration (no printout of the

final solution).
� 20 At each iteration, the Lagrange-multipliers, the variables x, the constraint values Ax and the

constraint status.
� 30 At each iteration, the diagonal elements of the upper triangular matrix T associated with the

TQ factorization (3) (see Section 11.2) of the working set, and the diagonal elements of the
upper triangular matrix R.

If Print Level � 5 and the unit number defined by Monitoring File is the same as that defined by
nag_file_set_unit_advisory (x04ab), then the summary output is suppressed.
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Problem Type a Default ¼ QP2

This option specifies the type of objective function to be minimized during the optimality phase. The
following are the five optional keywords and the dimensions of the arrays that must be specified in
order to define the objective function:

LP h not referenced, cvecðnÞ required;
QP1 hðldh; �Þ symmetric, cvec not referenced;
QP2 hðldh; �Þ symmetric, cvecðnÞ required;
QP3 hðldh; �Þ upper trapezoidal, cvec not referenced;
QP4 hðldh; �Þ upper trapezoidal, cvecðnÞ required.

For problems of type FP, the objective function is omitted and neither h nor cvec are referenced.

The following keywords are also acceptable. The minimum abbreviation of each keyword is underlined.

a Option
Quadratic QP2
Linear LP
Feasible FP

In addition, the keyword QP is equivalent to the default option QP2.

If h ¼ 0, i.e., the objective function is purely linear, the efficiency of nag_mip_iqp_dense (h02cb) may
be increased by specifying a as LP.

Rank Tolerance r Default ¼ 100�

Note that this option does not apply to problems of type FP or LP.

This parameter enables you to control the condition number of the triangular factor R (see Section 11).
If 	i denotes the function 	i ¼ max R11j j; R22j j; . . . ; Riij jf g, the dimension of R is defined to be smallest
index i such that Riþ1;iþ1

�� �� � ffiffiffi
r

p
	iþ1j j. If r � 0, the default value is used.

12 Description of Monitoring Information

This section describes the long line of output ( > 80 characters) which forms part of the monitoring
information produced by nag_mip_iqp_dense (h02cb). (See also the description of the optional
parameters Monitoring File and Print Level in Section 12.1.) You can control the level of printed
output.

To aid interpretation of the printed results, the following convention is used for numbering the
constraints: indices 1 through n refer to the bounds on the variables, and indices nþ 1 through nþmL

refer to the general constraints. When the status of a constraint changes, the index of the constraint is
printed, along with the designation L (lower bound), U (upper bound), E (equality), F (temporarily fixed
variable) or A (artificial constraint).

When Print Level � 5 and Monitoring File � 0, the following line of output is produced at every
iteration on the unit number specified by Monitoring File. In all cases, the values of the quantities
printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Jdel is the index of the constraint deleted from the working set. If Jdel is zero, no
constraint was deleted.

Jadd is the index of the constraint added to the working set. If Jadd is zero, no
constraint was added.

Step is the step taken along the computed search direction. If a constraint is added
during the current iteration, Step will be the step to the nearest constraint. When
the problem is of type LP, the step can be greater than one during the optimality
phase.
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Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible,
Objective is the value of the objective function. The output line for the final
iteration of the feasibility phase (i.e., the first iteration for which Ninf is zero)
will give the value of the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be
nonincreasing. During the feasibility phase, the number of constraint infeasi-
bilities will not increase until either a feasible point is found, or the optimality of
the multipliers implies that no feasible point exists. Once optimal multipliers are
obtained, the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

Bnd is the number of simple bound constraints in the current working set.

Lin is the number of general linear constraints in the current working set.

Art is the number of artificial constraints in the working set, i.e., the number of
columns of ZA (see Section 11.4).

Zr is the number of columns of ZR (see Section 11.2). Zr is the dimension of the
subspace in which the objective function is currently being minimized. The value
of Zr is the number of variables minus the number of constraints in the working
set; i.e., Zr ¼ n� Bndþ Linþ Artð Þ.
The value of nZ , the number of columns of Z (see Section 11.2) can be
calculated as nZ ¼ n� Bndþ Linð Þ. A zero value of nZ implies that x lies at a
vertex of the feasible region.

Norm Gz is ZT
RgFR

�� ��, the Euclidean norm of the reduced gradient with respect to ZR (see
Section 11.2 and Section 11.4). During the optimality phase, this norm will be
approximately zero after a unit step.

NOpt is the number of nonoptimal Lagrange-multipliers at the current point. NOpt is
not printed if the current x is infeasible or no multipliers have been calculated. At
a minimizer, NOpt will be zero.

Min Lm is the value of the Lagrange-multiplier associated with the deleted constraint. If
Min Lm is negative, a lower bound constraint has been deleted, if Min Lm is
positive, an upper bound constraint has been deleted. If no multipliers are
calculated during a given iteration, Min Lm will be zero.

Cond T is a lower bound on the condition number of the working set.

Cond Rz is a lower bound on the condition number of the triangular factor R (the
Cholesky factor of the current reduced Hessian; see Section 11.2). If the problem
is specified to be of type LP, Cond Rz is not printed.

Rzz is the last diagonal element � of the matrix D associated with the RTDR
factorization of the reduced Hessian HR (see Section 11.2). Rzz is only printed if
HR is not positive definite (in which case � 6¼ 1). If the printed value of Rzz is
small in absolute value, then HR is approximately singular. A negative value of
Rzz implies that the objective function has negative curvature on the current
working set.
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