NAG Fortran Compiler Release 6.2 Release Note
March 15, 2019

1 Introduction

Release 6.2 of the NAG Fortran Compiler is a minor update.
Customers upgrading from a previous release of the NAG Fortran Compiler will need a new licence key for this release.

See KLICENCE. txt for more information about Kusari Licence Management.

1.1 Compatibility with Release 6.1

Programs which use features from HPF (High Performance Fortran), for example the ILEN intrinsic function or the
HPF_LIBRARY module, are no longer supported.

The previously deprecated —abi=64 option on Linux x86-64 has been withdrawn. This option provided an ABI with
64-bit pointers but 32-bit object sizes and subscript arithmetic, and was only present for compatibility with Release
5.1 and earlier.

With the exception of HPF support and the deprecated option removal, Release 6.2 of the NAG Fortran Compiler is
fully compatible with Release 6.1.

1.2 Compatibility with Release 6.0

With the exception of HPF support and the deprecated option removal, Release 6.2 of the NAG Fortran Compiler is
compatible with Release 6.0 except that programs that use allocatable arrays of “Parameterised Derived Type” will
need to be recompiled (this only affects module variables and dummy arguments).

1.3 Compatibility with Releases 5.3.1, 5.3 and 5.2

With the exception of HPF support and the deprecated option removal, Release 6.2 of the NAG Fortran Compiler is
fully compatible with Release 5.3.1. It is also fully compatible with Releases 5.3 and 5.2, except that on Windows,
modules or procedures whose names begin with a dollar sign ($) need to be recompiled.

For a program that uses the new “Parameterised Derived Types” feature, it is strongly recommended that all parts
of the program that may allocate, deallocate, initialise or copy a polymorphic variable whose dynamic type might be
a parameterised derived type, should be compiled with Release 6.2.

1.4 Compatibility with Release 5.1

Release 6.2 of the NAG Fortran Compiler is compatible with NAGWare f95 Release 5.1 except that:

e programs that use features from HPF are not supported;

e programs or libraries that use the CLASS keyword, or which contain types that will be extended, need to be
recompiled;

e 64-bit programs and libraries compiled with Release 5.1 on Linux x86-64 (product NPL6A5INA) are binary
incompatible, and need to be recompiled.

1.5 Compatibility with Earlier Releases

Except as noted, the NAG Fortran Compiler release 6.2 is compatible with NAGWare f90 Releases 2.1 and 2.2, as well
as with all NAGWare {95 Releases from 1.0 to 5.0, except as noted below.

The following incompatibilities were introduced in Release 5.1:

e The value returned by STAT=, on an ALLOCATE or DEALLOCATE statement, may differ from the pre-5.1 value in
some cases. For further information see the FOO_STAT module documentation.

e Programs that used type extension (EXTENDS attribute) in 5.0 need to be recompiled.
e Formatted output for IEEE infinities and NaNs is different, and now conforms to Fortran 2003.
e List-directed output of a floating-point zero now uses F format, as required by Fortran 2003, instead of E format.

e An i/o or format error encounted during NAMELIST input will now skip the erroneous record. This behaviour is
the same as all other formatted input operations including list-directed.

2 New Features Summary

With the addition of defined input/output, and recursive specification functions, Fortran 2003 is fully supported by
Release 6.2. The other major new feature is single image coarray support (Fortran 2008).

Several other new features have been added from Fortran 2008, and some from the draft Fortran 2018 standard. Some
other common (obsolete) extensions have been added.

This release also contains additional error checking functionality and other minor enhancements.

3 New Fortran 2003 Features

e A function that is used in a specification expression is now permitted to be recursive (defined with the RECURSIVE
attribute). For example

PURE INTEGER RECURSIVE FUNCTION factorial(n) RESULT(r)
INTEGER,INTENT(IN) :: n
IF (n>1) THEN
r = n*xfactorial(n-1)
ELSE
r =1
END IF
END FUNCTION

can now be used in a specification expression. Note that a specification function must not invoke the procedure
that invoked it.

e Defined input/output (for derived types) is now available. For details see the Fortran 2003 language documen-
tation, or any good textbook.

4 New Fortran 2008 Features

e Coarray syntax and semantics are accepted (and checked for correctness). Coarrays are part of an SPMD (Single
Program Multiple Data) programming model, where multiple copies of a program, called “images”, are executed
in parallel. In this release of the NAG Fortran Compiler, execution is limited to a single image; that is, without
parallel execution.

For further details on coarrays, see the Fortran 2008 language documentation, or any good textbook.

e The pure inquiry function C_SIZEOF has been added to the intrinsic module ISO_C_BINDING. This function
takes one argument (X) which must be interoperable, and returns the storage size in bytes, like the C sizeof
operator. If X is an array, the result is the size of the whole array, not just a single element. Note that X cannot
be an assumed-size array.

e The name of an external procedure with a binding label is now considered to be a local identifier only, and not
a global identifier. That means that code like the following is now standard-conforming;:

SUBROUTINE sub() BIND(C,NAME=’one’)
PRINT *,’one’
END SUBROUTINE
SUBROUTINE sub() BIND(C,NAME=’two’)
PRINT *,’two’
END SUBROUTINE
PROGRAM test
INTERFACE
SUBROUTINE one() BIND(C)
END SUBROUTINE
SUBROUTINE two() BIND(C)
END SUBROUTINE
END INTERFACE
CALL one
CALL two
END PROGRAM

e An internal procedure is permitted to have the BIND(C) attribute, as long as it does not have a NAME= specifier.
Such a procedure is interoperable with C, but does not have a binding label (as if it were specified with NAME=").

e The intrinsic functions MAXLOC and MINLOC now have an additional optional argument BACK following the KIND
argument. It is scalar and of type Logical; if present with the value .True., if there is more than one element
that has the maximum value (for MAXLOC) or minimum value (for MINLOC), the array element index returned is
for the last element with that value rather than the first.

For example, the value of
MAXLOC(C [5,1,5 1, BACK=.TRUE.)

is the array [3], rather than [1].

e An ALLOCATE statement with the SOURCE= clause is permitted to have more than one allocation. The source-expr
is assigned to every variable allocated in the statement. For example,

PROGRAM multi_alloc
INTEGER,ALLOCATABLE :: x(:),y(:,:)
ALLOCATE(x(3),y(2,4) ,SOURCE=42)
PRINT *,x,y

END PROGRAM

will print the value “42” eleven times (the three elements of x and the eight elements of y). If the source-expr is
an array, every allocation needs to have the same shape.

e The restrictions that formerly applied to data-implied-do loop limits, and to subscripts in a data-i-do-object, have
been lifted. These restrictions did not permit use of intrinsic functions that were permitted in other constant
expressions. For example,

DATA (x(i),i=1,SIZE(x))/1,2,3,4,5,6,7,8,9,10/

is now permitted.

e A dummy argument with the VALUE attribute is permitted to be an array, and is permitted to be of type
CHARACTER with length non-constant and/or not equal to one. (It is still not permitted to have the ALLOCATABLE
or POINTER attributes, and is not permitted to be a coarray.)

The effect is that a copy is made of the actual argument, and the dummy argument is associated with the copy;
any changes to the dummy argument do not affect the actual argument. For example,

PROGRAM value_example_2008
INTEGER :: a(3) = [1,2,3]
CALL s(’Hello?’,a)

PRINT °(7X,3I6)°,a

CONTAINS

SUBROUTINE s(string,j)
CHARACTER (*) ,VALUE :: string
INTEGER,VALUE :: j(:)
string(LEN(string):) = ’ !’
j=J3+1
PRINT ’(7X,A,3I6)’,string, j

END SUBROUTINE

END PROGRAM

will produce the output

Hello! 2
1 2 3

w
W

New Draft Fortran 2018 Features

The expression in an ERROR STOP or STOP statement can be non-constant. It is still required to be default Integer
or default Character.

The ERROR STOP and STOP statements now have an optional QUIET= specifier, which is preceded by a comma
following the optional stop-code. This takes a Logical expression; if it is true at runtime then the STOP (or
ERROR STOP) does not output any message, and information about any IEEE exceptions that are signalling will
be suppressed. For example,

STOP 13, QUIET = .True.

will not display the usual ‘STOP: 13, but simply do normal termination, with a process exit status of 13. Note
that this means that the following two statements are equivalent:

STOP, QUIET=.True.
STOP ’message not output’, QUIET=.TRUE.

The intrinsic subroutine MOVE_ALLOC now has optional STAT and ERRMSG arguments. The STAT argument must
be of type Integer, with a decimal range of at least four (i.e. not an 8-bit integer); it is assigned the value
zero if the subroutine executes successfully, and a nonzero value otherwise. The ERRMSG argument must be of
type Character with default kind. If STAT is present and assigned a nonzero value, ERRMSG will be assigned an
explanatory message (if it is present); otherwise, ERRMSG will retain its previous value (if any).

For example,

INTEGER,ALLOCATABLE :: x(:),y(:)
INTEGER istat
CHARACTER(80) emsg

CALL MOVE_ALLOC(x,y,istat,emsg)
IF (istat/=0) THEN
PRINT *,’Unexpected error in MOVE_ALLOC: °’,TRIM(emsg)

The purpose of these arguments is to catch errors in multiple image coarray allocation/deallocation, such as
STAT _STOPPED_IMAGE and STAT_FAILED_IMAGE. As this release of the NAG Fortran Compiler only supports single
image execution, STAT will always be assigned zero, and ERRMSG will never be assigned anything.

6 Other Extensions

e Obsolete extension: D (debug) lines in Fixed Source Form.
A line with the letter ‘D’ (or ‘d’) in column one is a D line. If the —d_lines option is used, this will be treated
as a normal Fortran line, as if the D were a space. Otherwise, it will be treated as a comment line, as if the D
were a C.

For example, in

SUBROUTINE TEST(N)
INTEGER N
D PRINT *,’TESTING N’

the PRINT statement will be compiled only if —d_lines is used.

Note that if the initial line of a statement is a D line, any continuation lines it may have must also be D lines.
Similarly, if the initial line of a statement is not a D line, any continuation lines must not be D lines.

A D line can use TAB format, with the TAB expanding to one less space as the letter D already accounts for a
space.

e Obsolete (“dusty deck”) extension: named COMMON blocks with different sizes.
With the —dusty option, named COMMON blocks with different sizes (in the same file) are permitted. The effect
is that all the copies of that COMMON block are increased to the maximum size. Note that if a COMMON block in
a separately compiled file has a different size, the results are indeterminate, especially if the COMMON block is
initialized in a BLOCK DATA subprogram where it has a smaller size.
Use of this feature is strongly disrecommended. Also, a COMMON block that is OpenMP THREADPRIVATE is still
required to be the same size everywhere, even with the —dusty option.

e When overriding a byte-length specifier for non-CHARACTER type, the syntax “x(integer)” is accepted; pre-
viously, only “xinteger” was accepted. For example,

REAL X4, Y*(8)

Note that byte length specifiers are an obsolete extension. Kind type parameters should be used instead.

7 Additional error checking

e The runtime option show_dangling enables tracing of dangling pointers, for code compiled with —C=dangling.

Runtime options are controlled by the NAGFORTRAN_RUNTIME OPTIONS environment variable. If show_dangling
is specified, messages will be produced on the runtime error file when a dangling pointer is created, reassociated
with something else, nullified, or ceases to exist. For example,

[file.f90, line 20: Dangling pointer P detected (number 1), associated at file.f90, line 18]
[file.f90, line 7: Dangling pointer P (number 1) has been reassociated]

[file.f90, line 9: Dangling pointer Q (number 2) has been nullified]

[file.f90, line 21: Dangling pointer R (number 3) no longer exists]

The dangling pointer number is incremented every time a dangling pointer is detected. If an array with dangling
pointer components ceases to exist, a message will be produced for each dangling pointer component of each
element; however, the element subscripts will not be shown, instead ‘(...)’ will be produced to indicate that it
is an array element, e.g.

[file.f90, line 44: Dangling pointer X(...)%A (number 8) no longer exists]
e A “Questionable” warning message is now produced if a DO index variable (in a DO statement, or an i/o-

implied-do) is liable to accidental modification. That is, if it has the POINTER or TARGET attribute, is in a COMMON
block or EQUIVALENCE, or is a non-local variable being accessed by use or host association.

e A warning message is now produced if the result of an intrinsic function or operation underflows to zero.
Previously this warning only appeared for exponentiation.

e The —C=do option has been extended to check for modifying an active DO index variable via host association.
With this option, the example

Program example
Do i=1,10
Call inner
Print *,i
End Do
Contains
Subroutine inner
i = 999
End Subroutine
End Program

will produce the output

Runtime Error: example.f90, line 8: Assignment to active DO index I
Program terminated by fatal error

e Use in a READ statement of a character constant format or a FORMAT statement that has a character string edit
descriptor is now detected at compile time. For example,

Read 1,n
1 Format("Oops",I10)

will produce an error at compile time.

e When an input/output unit number is a 64-bit integer, having an invalid value such as being negative or greater
than HUGE (0_int32) is now more reliably detected. Negative values will now always raise IOERR_BAD_UNIT, and
positive values that are out of range will be treated as a nonexistent unit (thus raising I0ERR_BAD_UNIT except
for CLOSE, INQUIRE, and WAIT with no ID= specifier).

e The new option —C=alias enables checking for violation of the dummy argument aliasing rules; specifically,
assignment to a scalar dummy argument is checked to determine whether it affects another scalar dummy
argument; if so, a runtime error is produced. For example, if the file sub.f90 contains the following program,

Subroutine sub(a,b)
a=1
b =2
End Subroutine
Program test
Call sub(x,x)
Print *,x
End Program

and it is compiled with —C'=alias, the output

Runtime Error: sub.f90, line 2: Assignment to A affects dummy argument B
Program terminated by fatal error
will be produced at runtime.
This option is included in —C=all, but not included in the plain —C' option, as when it is extended to cover

other aliasing cases (in particular, arrays), it may have a large performance impact.

e Assignment of an out-of-range value (e.g. a large magnitude double precision value to a single precision variable)
now produces a warning at compile time.

e An actual argument that is not simply contiguous when the corresponding dummy argument is a CONTIGUOUS
pointer now produces an error message.

e Better error messages are now produced when a symbol has been accessed by USE association before an attempt
to IMPORT it.

8 Miscellaneous enhancements

e The interface generator (“nagfor =interfaces”) now outputs USE statements in a standardised form, with
entities required by each resulting interface block imported using the ONLY clause and with unneeded module
imports omitted. For example, given the code

Subroutine s(n, x)
Use iso_fortran_env
Integer (int32) :: n
Real (real6d) :: x(n)
Print *, compiler_options()
x = 42._real64

End Subroutine

an interface module of the form

Module interfaces
! Interface module generated on ...
Interface
Subroutine s(n, x)
Use, Intrinsic :: iso_fortran_env, Only: int32, real64
Integer (int32) :: n
Real (real64) :: x(n)
End Subroutine
End Interface
End Module

is created.

Callgraph output (from “nagfor =callgraph”) now indicates when an actual procedure for a non-optional
dummy could not be found in the input source.

The polisher (“nagfor =polish”) and dependency analyser (“nagfor =depend”) now accept the —mazcontin=
option, and so can be used on programs with more than 255 continuation lines.

The default polish setting —name_scopes=Insert has been changed to —name_scopes=Keywords.

There is a new polish option —dcolon_in_decls=X which controls the optional double colon in declaration and
specification statements. X can be one of: ‘Asis’, to make no change, ‘Insert’; to insert an optional double colon
when it is missing, and ‘Remove’, to remove the double colon when it is optional.

For example, with the code

Real x
Real :: y
Real, Save :: z

the —dcolon_in_decls=Insert option produces

Real :: x
Real :: y
Real, Save :: z

and the —dcolon_in_decls=Remove option produces

Real x
Real y
Real, Save :: z

e The new enhanced polisher tool provides advanced options for polishing files that are compilable. These options
are:

—add_arg_keywords
Add keywords to actual arguments in references to user-defined procedures with an explicit interface
and at least two dummy arguments, and in references to intrinsic procedures and intrinsic module
procedures with at least three dummy arguments (except for MAX and MIN, where it is at least three
actual arguments).
Keywords are not added to arguments that precede a label argument. The order of the arguments is
unchanged.

—add_arg_keywords=proc_class_list
Add keywords to actual arguments in procedure references, when the procedure has an explicit inter-
face, for the classes of procedure listed in proc_class_list, which is a comma-separated list that may
contain the following suboptions:

all (all classes of procedure),

bound (object-bound and type-bound procedures),
dummy (dummy procedures),
external (external procedures),
internal (internal procedures),
intrinsic (intrinsic procedures and intrinsic module procedures),
module (non-intrinsic module procedures),
(

user procedures other than intrinsic procedures and intrinsic module procedures).

Keywords are not added to arguments that precede a label argument. The order of the arguments is
unchanged. Procedure pointer components are also known as “object-bound procedures”, and thus
included in —add_arg_keywords=bound; named procedure pointers are treated as external procedures

and thus included in —add_arg_keywords=external.

A suboption name may be followed by a single nonzero digit (e.g. “intrinsic3”); this specifies that
for procedures covered by that suboption, keywords are only to be added if the procedure has at
least that many dummy arguments. For type-bound and object-bound procedures, the passed-object
dummy argument does not count towards the limit (as it never appears in the argument list). The
intrinsic MAX and MIN functions use the number of actual arguments instead.
A suboption name followed by a digit may be further followed by the letter ‘a’ (e.g. “intrinsic3a”;
this specifies that the argument limit applies to the number of actual arguments in a reference to the
procedure, not the number of dummy arguments (the number of actual arguments will be less than
the number of dummy arguments when an optional argument is omitted).
Note that suboptions are parsed from left to right, and later suboptions override earlier ones.
—intrinsic_case=analogy
Specifies whether the case of an intrinsic procedure name should be the same as other names (as_names),
or the same as language keywords (as_keywords).
—remove_intrinsic_stmts
Specifies that intrinsic procedure names that were not passed as actual arguments should be removed
from INTRINSIC statements, and that if all the names in an INTRINSIC statement are removed in
this way, the INTRINSIC statement itself should be removed. Any comments associated with the
INTRINSIC statement will remain.

e The precision unifier now has more accurate analysis of EQUIVALENCE statements, improving the usefulness
of its warning messages.

e Assigning a scalar value of intrinsic (non-Character) type to a contiguous array of the same type and kind has
improved performance in many cases.

e The new —kind=unique option makes all intrinsic kind type parameter values unique across the intrinsic types
(except that the kinds of Real and Complex are the same). This means that using the kind type parameter of
one intrinsic type to declare the kind of a different intrinsic type will produce a compile-time error. For example,

Integer,Parameter :: rkind = Selected_Real_Kind(15)
Integer,Parameter :: ikind = Selected_Int_Kind(9)
Real(rkind) :: x

Integer(rkind) :: n

will produce an error for the ‘Integer (rkind)’ statement.

e The new —Warn=class option causes additional warning messages to be produced according to class as follows:

allocation warn if an intrinsic assignment might cause allocation of the variable (or a subcomponent
thereof) being assigned to;

constant_coindexing
warn if all the cosubscripts in an image-selector are constant;

reallocation warn if an intrinsic assignment might cause reallocation of an already-allocated variable (or a
subcomponent thereof) being assigned to;

subnormal warn if an intrinsic function or operation with normal operands produces a subnormal result
(reduced precision, less than TINY(...)).

Reallocation only occurs when the shape of an array, the value of a deferred type parameter, or the dynamic
type (if polymorphic), differs between the variable (or subcomponent) and the expression (or the correspond-
ing subcomponent). Allocation can occur also when the variable (or subcomponent) is not allocated prior to
execution of the assignment (except for broadcast assignment). Note that —Warn=allocation thus subsumes
—Warn=reallocation.

For example, in

Subroutine s(x,y)
Integer,Allocatable :: x,y(:)
x = 123
y=11,2,31]

End Subroutine

both assignments might cause allocation (and thus produce warnings with —Warn=allocation), but only the
assignment to y can cause reallocation (and thus produce a warning with —Warn=reallocation).

e Conversion errors in PARAMETER declarations now produce more accurate line number information. Previously
these errors were reported on the use of the parameter, rather than its declaration. Similarly, errors in initiali-
sation of a variable could sometimes be reported with no line information; these are now reported at the line of
the initialisation. For example, if a source file contains the following code,

Program bad
Use Iso_Fortran_Env
Integer (int8) ,Parameter :: x = 1000
Print *,x

End Program

the conversion error for X will be reported at line 3 rather than at line 4.

Furthermore, if an overflow arises converting a floating-point constant value to an integer in such a context, this
is now considered to be an error rather than a warning. (The previous behaviour can still be obtained with the
—dusty option.) For example, if a source file contains

Subroutine s
Integer :: x = 1d300
x=x+1
Print *,x

End Subroutine

the conversion overflow will be reported as an error at line 2.

e The fpp preprocessor now allows unrecognised directives in unprocessed sections. For example, if the file
“test.ff90” contains the text

Program test
#if O
#unknown directive
#endif
Print *,’0k’
End Program

it will now compile successfully instead of producing an error message, and print ‘ok’ when executed.

e The full compiler manual is now available in HTML. It is located in html/manual/compiler.html.

