DPBSVX Example

To solve the equations

AX = B,

where A is the symmetric positive definite band matrix

A = $\displaystyle \left(\vphantom{
\begin{array}{rrrr}
5.49 & 2.68 & 0 & 0 \\
...
...\\
0 & -2.39 & 2.60 & -2.22 \\
0 & 0 & -2.22 & 5.17
\end{array} }\right.$$\displaystyle \begin{array}{rrrr}
5.49 & 2.68 & 0 & 0 \\
2.68 & 5.63 & -2.39 & 0 \\
0 & -2.39 & 2.60 & -2.22 \\
0 & 0 & -2.22 & 5.17
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rrrr}
5.49 & 2.68 & 0 & 0 \\
...
...\\
0 & -2.39 & 2.60 & -2.22 \\
0 & 0 & -2.22 & 5.17
\end{array} }\right)$  and  B = $\displaystyle \left(\vphantom{
\begin{array}{rr}
22.09 & 5.10 \\
9.31 & 30.81 \\
-5.24 & -25.82 \\
11.83 & 22.90
\end{array} }\right.$$\displaystyle \begin{array}{rr}
22.09 & 5.10 \\
9.31 & 30.81 \\
-5.24 & -25.82 \\
11.83 & 22.90
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rr}
22.09 & 5.10 \\
9.31 & 30.81 \\
-5.24 & -25.82 \\
11.83 & 22.90
\end{array} }\right)$.

Error estimates for the solutions, information on equilibration and an estimate of the reciprocal of the condition number of the scaled matrix A are also output.

Example program
Example data
Example results