ZHEGV Example

To find all the eigenvalues and eigenvectors of the generalized Hermitian eigenproblem Ax = $ \lambda$Bx, where

A = $\displaystyle \left(\vphantom{
\begin{array}{cccc}
-7.36 & 0.77 - 0.43i & -0....
... \\
3.01 + 6.97i & 1.90 - 3.73i & 2.88 + 3.17i & -2.54
\end{array} }\right.$$\displaystyle \begin{array}{cccc}
-7.36 & 0.77 - 0.43i & -0.64 - 0.92i & 3.01 ...
...8 - 3.17i \\
3.01 + 6.97i & 1.90 - 3.73i & 2.88 + 3.17i & -2.54
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{cccc}
-7.36 & 0.77 - 0.43i & -0....
... \\
3.01 + 6.97i & 1.90 - 3.73i & 2.88 + 3.17i & -2.54
\end{array} }\right)$

and

B = $\displaystyle \left(\vphantom{
\begin{array}{cccc}
3.23 & 1.51 - 1.92 i & 1.9...
...
0.42 - 2.50 i & -1.18 - 1.37 i & 2.33 + 0.14 i & 4.29
\end{array} }\right.$$\displaystyle \begin{array}{cccc}
3.23 & 1.51 - 1.92 i & 1.90 + 0.84 i & 0.42 ...
...0.14 i \\
0.42 - 2.50 i & -1.18 - 1.37 i & 2.33 + 0.14 i & 4.29
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{cccc}
3.23 & 1.51 - 1.92 i & 1.9...
...
0.42 - 2.50 i & -1.18 - 1.37 i & 2.33 + 0.14 i & 4.29
\end{array} }\right)$,

together with an estimate of the condition number of B, and approximate error bounds for the computed eigenvalues and eigenvectors.

The example program for ZHEGVD illustrates solving a generalized Hermitian eigenproblem of the form ABx = $ \lambda$x.

Example program
Example data
Example results