DPOSVX Example

To solve the equations

AX = B,

where A is the symmetric positive definite matrix

A = $\displaystyle \left(\vphantom{
\begin{array}{rrrr}
4.16 & -3.12 & 0.56 & -0.1...
...56 & -0.83 & 0.76 & 0.34 \\
-0.10 & 1.18 & 0.34 & 1.18
\end{array} }\right.$$\displaystyle \begin{array}{rrrr}
4.16 & -3.12 & 0.56 & -0.10 \\
-3.12 & 5....
... \\
0.56 & -0.83 & 0.76 & 0.34 \\
-0.10 & 1.18 & 0.34 & 1.18
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rrrr}
4.16 & -3.12 & 0.56 & -0.1...
...56 & -0.83 & 0.76 & 0.34 \\
-0.10 & 1.18 & 0.34 & 1.18
\end{array} }\right)$  and  B = $\displaystyle \left(\vphantom{
\begin{array}{rr}
8.70 & 8.30 \\
-13.35 & 2.13 \\
1.89 & 1.61 \\
-4.14 & 5.00
\end{array} }\right.$$\displaystyle \begin{array}{rr}
8.70 & 8.30 \\
-13.35 & 2.13 \\
1.89 & 1.61 \\
-4.14 & 5.00
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rr}
8.70 & 8.30 \\
-13.35 & 2.13 \\
1.89 & 1.61 \\
-4.14 & 5.00
\end{array} }\right)$.

Error estimates for the solutions, information on equilibration and an estimate of the reciprocal of the condition number of the scaled matrix A are also output.

Example program
Example data
Example results