DSPSVX Example

To solve the equations

AX = B,

where A is the symmetric matrix

A = $\displaystyle \left(\vphantom{
\begin{array}{rrrr}
-1.81 & 2.06 & 0.63 & -1.1...
...63 & 1.87 & -0.21 & 3.87 \\
-1.15 & 4.20 & 3.87 & 2.07
\end{array} }\right.$$\displaystyle \begin{array}{rrrr}
-1.81 & 2.06 & 0.63 & -1.15 \\
2.06 & 1.1...
... \\
0.63 & 1.87 & -0.21 & 3.87 \\
-1.15 & 4.20 & 3.87 & 2.07
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rrrr}
-1.81 & 2.06 & 0.63 & -1.1...
...63 & 1.87 & -0.21 & 3.87 \\
-1.15 & 4.20 & 3.87 & 2.07
\end{array} }\right)$  and  B = $\displaystyle \left(\vphantom{
\begin{array}{rr}
0.96 & 3.93 \\
6.07 & 19.25 \\
8.38 & 9.90 \\
9.50 & 27.85
\end{array} }\right.$$\displaystyle \begin{array}{rr}
0.96 & 3.93 \\
6.07 & 19.25 \\
8.38 & 9.90 \\
9.50 & 27.85
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rr}
0.96 & 3.93 \\
6.07 & 19.25 \\
8.38 & 9.90 \\
9.50 & 27.85
\end{array} }\right)$.

Error estimates for the solutions, and an estimate of the reciprocal of the condition number of the matrix A are also output.

Example program
Example data
Example results