ZGBSVX Example

To solve the equations

AX = B,

where A is the band matrix

A = $\displaystyle \left(\vphantom{
\begin{array}{cccc}
-1.65 + 2.26 i & -2.05 - 0...
....33 - 1.04 i \\
0 & 0 & 4.48 - 1.09 i & -0.46 - 1.72 i
\end{array} }\right.$$\displaystyle \begin{array}{cccc}
-1.65 + 2.26 i & -2.05 - 0.85 i & 0.97 - 2.8...
....94 i & 3.33 - 1.04 i \\
0 & 0 & 4.48 - 1.09 i & -0.46 - 1.72 i
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{cccc}
-1.65 + 2.26 i & -2.05 - 0...
....33 - 1.04 i \\
0 & 0 & 4.48 - 1.09 i & -0.46 - 1.72 i
\end{array} }\right)$

and

B = $\displaystyle \left(\vphantom{
\begin{array}{cc}
-1.06 + 21.50 i & 12.85 + 2....
... -20.73 - 1.23 i \\
-34.56 + 16.73 i & 26.01 + 31.97 i
\end{array} }\right.$$\displaystyle \begin{array}{cc}
-1.06 + 21.50 i & 12.85 + 2.84 i \\
-22.72 ...
...38.60 i & -20.73 - 1.23 i \\
-34.56 + 16.73 i & 26.01 + 31.97 i
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{cc}
-1.06 + 21.50 i & 12.85 + 2....
... -20.73 - 1.23 i \\
-34.56 + 16.73 i & 26.01 + 31.97 i
\end{array} }\right)$.

Estimates for the backward errors, forward errors, condition number and pivot growth are also output, together with information on the equilibration of A.

Example program
Example data
Example results