ZGESVX Example

To solve the equations

AX = B,

where A is the general matrix

A = $\displaystyle \left(\vphantom{
\begin{array}{cccc}
-1.34 + 2.55 i & 0.28 + 3....
...0.39 i & -0.56 + 1.47 i & -0.83 - 0.69 i & -1.96 + 0.67 i
\end{array} }\right.$$\displaystyle \begin{array}{cccc}
-1.34 + 2.55 i & 0.28 + 3.17 i & -6.39 - 2.2...
...
2.41 + 0.39 i & -0.56 + 1.47 i & -0.83 - 0.69 i & -1.96 + 0.67 i
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{cccc}
-1.34 + 2.55 i & 0.28 + 3....
...0.39 i & -0.56 + 1.47 i & -0.83 - 0.69 i & -1.96 + 0.67 i
\end{array} }\right)$

and

B = $\displaystyle \left(\vphantom{
\begin{array}{cc}
26.26 + 51.78 i & 31.32 - 6....
... i & -2.15 + 30.19 i \\
1.16 + 2.57 i & -2.56 + 7.55 i
\end{array} }\right.$$\displaystyle \begin{array}{cc}
26.26 + 51.78 i & 31.32 - 6.70 i \\
64.30 -...
...5 + 25.31 i & -2.15 + 30.19 i \\
1.16 + 2.57 i & -2.56 + 7.55 i
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{cc}
26.26 + 51.78 i & 31.32 - 6....
... i & -2.15 + 30.19 i \\
1.16 + 2.57 i & -2.56 + 7.55 i
\end{array} }\right)$.

Error estimates for the solutions, information on scaling, an estimate of the reciprocal of the condition number of the scaled matrix A and an estimate of the reciprocal of the pivot growth factor for the factorization of A are also output.

Example program
Example data
Example results