ZGTSVX Example

To solve the equations

AX = B,

where A is the tridiagonal matrix

A = $\displaystyle \left(\vphantom{
\begin{array}{ccccc}
-1.3 + 1.3i & 2.0 - 1.0i ...
...i & 1.0 - 1.0i \\
0 & 0 & 0 & 1.0 + 1.0i & -3.3 + 1.3i
\end{array} }\right.$$\displaystyle \begin{array}{ccccc}
-1.3 + 1.3i & 2.0 - 1.0i & 0 & 0 & 0 \\
...
...0.3 + 4.3i & 1.0 - 1.0i \\
0 & 0 & 0 & 1.0 + 1.0i & -3.3 + 1.3i
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{ccccc}
-1.3 + 1.3i & 2.0 - 1.0i ...
...i & 1.0 - 1.0i \\
0 & 0 & 0 & 1.0 + 1.0i & -3.3 + 1.3i
\end{array} }\right)$

and

B = $\displaystyle \left(\vphantom{
\begin{array}{rr}
2.4 - 5.0i & 2.7 + 6.9i \\  ...
...1.9 - 7.7i & -3.9 + 9.3i \\
-1.0 + 1.6i & -3.0 + 12.2i
\end{array} }\right.$$\displaystyle \begin{array}{rr}
2.4 - 5.0i & 2.7 + 6.9i \\
3.4 + 18.2i & -6...
...i \\
31.9 - 7.7i & -3.9 + 9.3i \\
-1.0 + 1.6i & -3.0 + 12.2i
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rr}
2.4 - 5.0i & 2.7 + 6.9i \\  ...
...1.9 - 7.7i & -3.9 + 9.3i \\
-1.0 + 1.6i & -3.0 + 12.2i
\end{array} }\right)$.

Estimates for the backward errors, forward errors and condition number are also output.

Example program
Example data
Example results