ZPPSVX Example

To solve the equations

AX = B,

where A is the Hermitian positive definite matrix

A = $\displaystyle \left(\vphantom{
\begin{array}{cccc}
3.23 & 1.51 - 1.92 i & 1.9...
...
0.42 - 2.50 i & -1.18 - 1.37 i & 2.33 + 0.14 i & 4.29
\end{array} }\right.$$\displaystyle \begin{array}{cccc}
3.23 & 1.51 - 1.92 i & 1.90 + 0.84 i & 0.42 ...
...0.14 i \\
0.42 - 2.50 i & -1.18 - 1.37 i & 2.33 + 0.14 i & 4.29
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{cccc}
3.23 & 1.51 - 1.92 i & 1.9...
...
0.42 - 2.50 i & -1.18 - 1.37 i & 2.33 + 0.14 i & 4.29
\end{array} }\right)$

and

B = $\displaystyle \left(\vphantom{
\begin{array}{cc}
3.93 - 6.14 i & 1.48 + 6.58 ...
... i & -4.91 + 2.29 i \\
1.99 - 14.38 i & 7.64 - 10.79 i
\end{array} }\right.$$\displaystyle \begin{array}{cc}
3.93 - 6.14 i & 1.48 + 6.58 i \\
6.17 + 9.4...
...7 - 21.83 i & -4.91 + 2.29 i \\
1.99 - 14.38 i & 7.64 - 10.79 i
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{cc}
3.93 - 6.14 i & 1.48 + 6.58 ...
... i & -4.91 + 2.29 i \\
1.99 - 14.38 i & 7.64 - 10.79 i
\end{array} }\right)$.

Error estimates for the solutions, information on equilibration and an estimate of the reciprocal of the condition number of the scaled matrix A are also output.

Example program
Example data
Example results