DGBSVX Example

To solve the equations

AX = B,

where A is the band matrix

A = $\displaystyle \left(\vphantom{
\begin{array}{rrrr}
-0.23 & 2.54 & -3.66 & 0 \...
... \\
0 & 2.56 & 2.46 & 4.07 \\
0 & 0 & -4.78 & -3.82
\end{array} }\right.$$\displaystyle \begin{array}{rrrr}
-0.23 & 2.54 & -3.66 & 0 \\
-6.98 & 2.46 ...
...3 & -2.13 \\
0 & 2.56 & 2.46 & 4.07 \\
0 & 0 & -4.78 & -3.82
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rrrr}
-0.23 & 2.54 & -3.66 & 0 \...
... \\
0 & 2.56 & 2.46 & 4.07 \\
0 & 0 & -4.78 & -3.82
\end{array} }\right)$  and  B = $\displaystyle \left(\vphantom{
\begin{array}{rr}
4.42 & -36.01 \\
27.13 & -31.67 \\
-6.14 & -1.16 \\
10.50 & -25.82
\end{array} }\right.$$\displaystyle \begin{array}{rr}
4.42 & -36.01 \\
27.13 & -31.67 \\
-6.14 & -1.16 \\
10.50 & -25.82
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rr}
4.42 & -36.01 \\
27.13 & -31.67 \\
-6.14 & -1.16 \\
10.50 & -25.82
\end{array} }\right)$.

Estimates for the backward errors, forward errors, condition number and pivot growth are also output, together with information on the equilibration of A.

Example program
Example data
Example results