DGESVX Example

To solve the equations

AX = B,

where A is the general matrix

A = $\displaystyle \left(\vphantom{
\begin{array}{rrrr}
1.80 & 2.88 & 2.05 & -0.89...
...-2.69 & -2.90 & -1.04 \\
-1.11 & -0.66 & -0.59 & -0.80
\end{array} }\right.$$\displaystyle \begin{array}{rrrr}
1.80 & 2.88 & 2.05 & -0.89 \\
525.00 & -2...
...
1.58 & -2.69 & -2.90 & -1.04 \\
-1.11 & -0.66 & -0.59 & -0.80
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rrrr}
1.80 & 2.88 & 2.05 & -0.89...
...-2.69 & -2.90 & -1.04 \\
-1.11 & -0.66 & -0.59 & -0.80
\end{array} }\right)$  and  B = $\displaystyle \left(\vphantom{
\begin{array}{rr}
9.52 & 18.47 \\
2435.00 & 225.00 \\
0.77 & -13.28 \\
-6.22 & -6.21
\end{array} }\right.$$\displaystyle \begin{array}{rr}
9.52 & 18.47 \\
2435.00 & 225.00 \\
0.77 & -13.28 \\
-6.22 & -6.21
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rr}
9.52 & 18.47 \\
2435.00 & 225.00 \\
0.77 & -13.28 \\
-6.22 & -6.21
\end{array} }\right)$.

Error estimates for the solutions, information on scaling, an estimate of the reciprocal of the condition number of the scaled matrix A and an estimate of the reciprocal of the pivot growth factor for the factorization of A are also output.

Example program
Example data
Example results