DGTSVX Example

To solve the equations

AX = B,

where A is the tridiagonal matrix

A = $\displaystyle \left(\vphantom{
\begin{array}{rrrrr}
3.0 & 2.1 & 0 & 0 & 0 \\ ...
...
0 & 0 & 7.0 & -0.9 & 8.0 \\
0 & 0 & 0 & -6.0 & 7.1
\end{array} }\right.$$\displaystyle \begin{array}{rrrrr}
3.0 & 2.1 & 0 & 0 & 0 \\
3.4 & 2.3 & -1....
....9 & 0 \\
0 & 0 & 7.0 & -0.9 & 8.0 \\
0 & 0 & 0 & -6.0 & 7.1
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rrrrr}
3.0 & 2.1 & 0 & 0 & 0 \\ ...
...
0 & 0 & 7.0 & -0.9 & 8.0 \\
0 & 0 & 0 & -6.0 & 7.1
\end{array} }\right)$  and  B = $\displaystyle \left(\vphantom{
\begin{array}{rr}
2.7 & 6.6 \\
-0.5 & 10.8 \\
2.6 & -3.2 \\
0.6 & -11.2 \\
2.7 & 19.1
\end{array} }\right.$$\displaystyle \begin{array}{rr}
2.7 & 6.6 \\
-0.5 & 10.8 \\
2.6 & -3.2 \\
0.6 & -11.2 \\
2.7 & 19.1
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rr}
2.7 & 6.6 \\
-0.5 & 10.8 \\
2.6 & -3.2 \\
0.6 & -11.2 \\
2.7 & 19.1
\end{array} }\right)$.

Estimates for the backward errors, forward errors and condition number are also output.

Example program
Example data
Example results