DPBSV Example

To solve the equations

Ax = b,

where A is the symmetric positive definite band matrix

A = $\displaystyle \left(\vphantom{
\begin{array}{rrrr}
5.49 & 2.68 & 0 & 0 \\
...
...\\
0 & -2.39 & 2.60 & -2.22 \\
0 & 0 & -2.22 & 5.17
\end{array} }\right.$$\displaystyle \begin{array}{rrrr}
5.49 & 2.68 & 0 & 0 \\
2.68 & 5.63 & -2.39 & 0 \\
0 & -2.39 & 2.60 & -2.22 \\
0 & 0 & -2.22 & 5.17
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rrrr}
5.49 & 2.68 & 0 & 0 \\
...
...\\
0 & -2.39 & 2.60 & -2.22 \\
0 & 0 & -2.22 & 5.17
\end{array} }\right)$  and  b = $\displaystyle \left(\vphantom{
\begin{array}{r}
22.09 \\
9.31 \\
-5.24 \\
11.83
\end{array} }\right.$$\displaystyle \begin{array}{r}
22.09 \\
9.31 \\
-5.24 \\
11.83
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{r}
22.09 \\
9.31 \\
-5.24 \\
11.83
\end{array} }\right)$.

Details of the Cholesky factorization of A are also output.

Example program
Example data
Example results