Nag

From Runtime to Compile Time Adjoints
C++11 takes dco/c++ one step closer to an AD compiler (and works in CUDA on Linux)

o\

Jacques du Toit (Numerical Algorithms Group), Johannes Lotz (RWTH Aachen) and Viktor Mosenkis (Numerical Algorithms Group)

Algorithmic Differentiation: Compile Time vs Runtime

There are two approaches to adjoint algorithmic differentiation: com-
pile time (which includes hand written adjoints) and runtime.

e Compile time approach: primal code is passed through an AD com-
piler, producing source code implementing the adjoint. This 1s com-
piled and linked with normal platform tools.

e Runtime approach: primal code 1s executed through a tool which
builds an execution graph at runtime and then computes the adjoint
from this graph.

These two approaches have different strengths:

e AD Compiler: can produce extremely efficient adjoints, but only
simple input languages are understood, typically only a subset of
C. Production C++ source codes are just too complex. Primal and
adjoint codes must be kept in sync.

e Runtime tool: can handle production C++ codes, however there 1s an
inevitable runtime penalty (execution time and memory) from build-
ing up the graph and interpreting it.

Many organisations prefer runtime AD tools such as dco/c++ due to
their flexibility, increased developer productivity and performance: the
runtime overhead of dco/c++ 1s typically small.

C++11 and a Meta-Program AD Compiler

C++11 1introduces the keyword auto. For suitably formatted blocks
of straight-line code (code with no control flow, e.g., 1 £, for, etc.)
it 1s possible to use auto to construct an execution graph at compile
time. A meta-program can convert this into an adjoint which can
be as efficient as that produced by an AD compiler. All this is done
in a single pass by the platform compiler over the code, i.c., it is
completely transparent to the user.

The target block of straight-line code must observe certain constraints:

e cach active input must be “labelled” using dco/c++ API
e cach intermediate variable must be of type const auto

e cach output must be assigned only once

This idea has been implemented in a new experimental dco/c++ type
dco: :ntr (no tape reversal).

April 2015

Example Code
This code snippet 1llustrates usage of the new type on a function foo:

bool COMPUTE PASSIVELY>
double 3,

template<typename FP,
void foo(const FP &x1, const FP &x2,
// Active inputs are ’labelled’

FP &y) |

const auto txl = dco::1abel<COMPUTE_PASSIVELY, 0> (x0) ;
const auto tx2 = dco::1abel<COMPUTE_PASSIVELY, 1> (x1);
const auto tl = txl * sqgrt(tx2);

const auto t2 = tx2 / txl;

const auto t3 = t2 % exp(-0.5 / a * tl * sin(t2)) - tx1;
y = t3 + txl x tl;

}

// Function can be called with
foo<double, true> (x1, x2, a, V);

// Passive computation with the new dco type
foo<dco::ntr, true>(x1l, x2, a, V);

// Active computation: adjoint of y propagated
// to adjoints of x1 and x2

dco::derivative(y) = 1.0;

foo<dco::ntr, false> (x1, x2, a, Vy);

double al x1 = dco::derivative(xl);

double al x2 = dco::derivative (x2);

"normal’ passive types

Benetfits of the New dco/c++ Type

The type makes it much easier to produce “hand written adjoints™:

e It handles the tedious, error-prone differentiation and adjoint prop-
agation of blocks of straight-line code

e Changes to these blocks are straightforward: adjoints are always in
sync

e Users only focus on the overall data flow reversal and dco/c++’s
tape can be used for this (if appropriate)

e Complexities of C++ types are automatically handled

Test Code 1: Euler Stepping of a Single Local Vol Path

The new type was tested on an Euler scheme for a single sample path
in a local volatility model with the volatility surface expressed as a cu-
bic spline. None of the compilers struggled with this fairly typical
finance code. The runtime was compared to that of a hand-written ad-
joint (all times were scaled by the primal runtime). Note the dco/c++
tape 1s currently not supported in CUDA, whereas the new type is.

Test Code 2: Spherical Harmonic Function

To test the robustness of the new type we applied it to a spherical har-
monic function from computational geometry. The code has 4 inputs,
1 output, 1s 80 lines long and has 330 edges (and numerous sub-trees)

Corresponding author: Jacques du Toit (jacques @nag.co.uk)

in its binary Directed Acyclic Graph. Producing an efficient metaprogram-
instantiated adjoint entails a phenomenal amount of analysis by the
compilers and they struggled. All the compilers produced the correct
answer, however only clang optimized the meta-program output fully
(Linux nvce 7.0 failed to compile due to a compiler bug). More work 1s
needed to optimize the meta-program for such large blocks of straight-
line code, and this process 1s already underway.

Relative Runtimes (Primal vs Adjoint) for Test Code 1

Primal HE}nd— New
Compiler . dco/c++| written |dco/c++
Runtime ..
Adjoint type
Linux
gcc4.7.2 1 7.42X 2.11x 2.40x
clang 3.4 1 8.42x 2.07x 2.17x
icc 15.0.2 1 8.15x 2.25x 2.37x
nvce 7.0 1 — 2.84x 2.58x
Windows
icl 15.0.1 1 8.60x 2.47x 2.57x
Visual Studio 2013 Not C++11 compliant: compilation fails

nvce 7.0 Not C++11 compliant: compilation fails

Relative Runtimes (Primal vs Adjoint) for Test Code 2

Primal Hand- New
Compiler . dco/c++| written |dco/c++
Runtime ..
Adjoint type
Linux
clang 3.4 1 10.52x 2.35x 2.773x
gcc 4.7.2 1 17.773x 1.85x 8.00x
icc 15.0.2 1 17.21x 1.76x 11.58
nvce 7.0 Compilation fails due to compiler bug
Windows
icl 15.0.1 1 19.93x 1.45x 12.79x
Visual Studio 2013 Not C++11 compliant: compilation fails
nvce 7.0 Not C++11 compliant: compilation fails

Www.nag.com

