
April 2015 Corresponding author: Jacques du Toit (jacques@nag.co.uk) www.nag.com

in its binary Directed Acyclic Graph. Producing an efficient metaprogram-
instantiated adjoint entails a phenomenal amount of analysis by the
compilers and they struggled. All the compilers produced the correct
answer, however only clang optimized the meta-program output fully
(Linux nvcc 7.0 failed to compile due to a compiler bug). More work is
needed to optimize the meta-program for such large blocks of straight-
line code, and this process is already underway.

Relative Runtimes (Primal vs Adjoint) for Test Code 1

Compiler
Primal

Runtime
dco/c++

Hand-
written
Adjoint

New
dco/c++

type

Linux
gcc 4.7.2 1 7.42x 2.11x 2.40x
clang 3.4 1 8.42x 2.07x 2.17x
icc 15.0.2 1 8.15x 2.25x 2.37x
nvcc 7.0 1 – 2.84x 2.58x

Windows
icl 15.0.1 1 8.60x 2.47x 2.57x

Visual Studio 2013 Not C++11 compliant: compilation fails
nvcc 7.0 Not C++11 compliant: compilation fails

Relative Runtimes (Primal vs Adjoint) for Test Code 2

Compiler
Primal

Runtime
dco/c++

Hand-
written
Adjoint

New
dco/c++

type

Linux
clang 3.4 1 10.52x 2.35x 2.73x
gcc 4.7.2 1 17.73x 1.85x 8.00x
icc 15.0.2 1 17.21x 1.76x 11.58
nvcc 7.0 Compilation fails due to compiler bug

Windows
icl 15.0.1 1 19.93x 1.45x 12.79x

Visual Studio 2013 Not C++11 compliant: compilation fails
nvcc 7.0 Not C++11 compliant: compilation fails

Example Code
This code snippet illustrates usage of the new type on a function foo:
template<typename FP, bool COMPUTE_PASSIVELY>
void foo(const FP &x1, const FP &x2, double a, FP &y) {

// Active inputs are ’labelled’
const auto tx1 = dco::label<COMPUTE_PASSIVELY,0>(x0);
const auto tx2 = dco::label<COMPUTE_PASSIVELY,1>(x1);
const auto t1 = tx1 * sqrt(tx2);
const auto t2 = tx2 / tx1;
const auto t3 = t2 * exp(-0.5 / a * t1 * sin(t2)) - tx1;
y = t3 + tx1 * t1;

}
// Function can be called with ’normal’ passive types
foo<double, true>(x1, x2, a, y);
// Passive computation with the new dco type
foo<dco::ntr, true>(x1, x2, a, y);
// Active computation: adjoint of y propagated
// to adjoints of x1 and x2
dco::derivative(y) = 1.0;
foo<dco::ntr, false>(x1, x2, a, y);
double a1_x1 = dco::derivative(x1);
double a1_x2 = dco::derivative(x2);

Benefits of the New dco/c++ Type
The type makes it much easier to produce “hand written adjoints”:

• It handles the tedious, error-prone differentiation and adjoint prop-
agation of blocks of straight-line code

• Changes to these blocks are straightforward: adjoints are always in
sync

• Users only focus on the overall data flow reversal and dco/c++’s
tape can be used for this (if appropriate)

• Complexities of C++ types are automatically handled

Test Code 1: Euler Stepping of a Single Local Vol Path
The new type was tested on an Euler scheme for a single sample path
in a local volatility model with the volatility surface expressed as a cu-
bic spline. None of the compilers struggled with this fairly typical
finance code. The runtime was compared to that of a hand-written ad-
joint (all times were scaled by the primal runtime). Note the dco/c++
tape is currently not supported in CUDA, whereas the new type is.

Test Code 2: Spherical Harmonic Function
To test the robustness of the new type we applied it to a spherical har-
monic function from computational geometry. The code has 4 inputs,
1 output, is 80 lines long and has 330 edges (and numerous sub-trees)

Algorithmic Differentiation: Compile Time vs Runtime
There are two approaches to adjoint algorithmic differentiation: com-
pile time (which includes hand written adjoints) and runtime.

• Compile time approach: primal code is passed through an AD com-
piler, producing source code implementing the adjoint. This is com-
piled and linked with normal platform tools.

• Runtime approach: primal code is executed through a tool which
builds an execution graph at runtime and then computes the adjoint
from this graph.

These two approaches have different strengths:

• AD Compiler: can produce extremely efficient adjoints, but only
simple input languages are understood, typically only a subset of
C. Production C++ source codes are just too complex. Primal and
adjoint codes must be kept in sync.

• Runtime tool: can handle production C++ codes, however there is an
inevitable runtime penalty (execution time and memory) from build-
ing up the graph and interpreting it.

Many organisations prefer runtime AD tools such as dco/c++ due to
their flexibility, increased developer productivity and performance: the
runtime overhead of dco/c++ is typically small.

C++11 and a Meta-Program AD Compiler
C++11 introduces the keyword auto. For suitably formatted blocks
of straight-line code (code with no control flow, e.g., if, for, etc.)
it is possible to use auto to construct an execution graph at compile
time. A meta-program can convert this into an adjoint which can
be as efficient as that produced by an AD compiler. All this is done
in a single pass by the platform compiler over the code, i.e., it is
completely transparent to the user.

The target block of straight-line code must observe certain constraints:

• each active input must be “labelled” using dco/c++ API

• each intermediate variable must be of type const auto

• each output must be assigned only once

This idea has been implemented in a new experimental dco/c++ type
dco::ntr (no tape reversal).

From Runtime to Compile Time Adjoints
C++11 takes dco/c++ one step closer to an AD compiler (and works in CUDA on Linux)

Jacques du Toit (Numerical Algorithms Group), Johannes Lotz (RWTH Aachen) and Viktor Mosenkis (Numerical Algorithms Group)

STCE


