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From Runtime to Compile Time Adjoints
C++11 takes dco/c++ one step closer to an AD compiler (and works in CUDA on Linux)
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Algorithmic Differentiation: Compile Time vs Runtime

There are two approaches to adjoint algorithmic differentiation: com-
pile time (which includes hand written adjoints) and runtime.

e Compile time approach: primal code is passed through an AD com-
piler, producing source code implementing the adjoint. This 1s com-
piled and linked with normal platform tools.

e Runtime approach: primal code 1s executed through a tool which
builds an execution graph at runtime and then computes the adjoint
from this graph.

These two approaches have different strengths:

e AD Compiler: can produce extremely efficient adjoints, but only
simple input languages are understood, typically only a subset of
C. Production C++ source codes are just too complex. Primal and
adjoint codes must be kept in sync.

e Runtime tool: can handle production C++ codes, however there 1s an
inevitable runtime penalty (execution time and memory) from build-
ing up the graph and interpreting it.

Many organisations prefer runtime AD tools such as dco/c++ due to
their flexibility, increased developer productivity and performance: the
runtime overhead of dco/c++ 1s typically small.

C++11 and a Meta-Program AD Compiler

C++11 1introduces the keyword auto. For suitably formatted blocks
of straight-line code (code with no control flow, e.g., 1 £, for, etc.)
it 1s possible to use auto to construct an execution graph at compile
time. A meta-program can convert this into an adjoint which can
be as efficient as that produced by an AD compiler. All this is done
in a single pass by the platform compiler over the code, i.c., it is
completely transparent to the user.

The target block of straight-line code must observe certain constraints:

e cach active input must be “labelled” using dco/c++ API
e cach intermediate variable must be of type const auto

e cach output must be assigned only once

This idea has been implemented in a new experimental dco/c++ type
dco: :ntr (no tape reversal).
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Example Code
This code snippet 1llustrates usage of the new type on a function foo:

bool COMPUTE PASSIVELY>
double 3,

template<typename FP,
void foo(const FP &x1, const FP &x2,
// Active inputs are ’labelled’

FP &y) |

const auto txl = dco::1abel<COMPUTE_PASSIVELY, 0> (x0) ;
const auto tx2 = dco::1abel<COMPUTE_PASSIVELY, 1> (x1);
const auto tl = txl * sqgrt(tx2);

const auto t2 = tx2 / txl;

const auto t3 = t2 % exp(-0.5 / a * tl * sin(t2)) - tx1;
y = t3 + txl x tl;

}

// Function can be called with
foo<double, true> (x1, x2, a, V);

// Passive computation with the new dco type
foo<dco::ntr, true>(x1l, x2, a, V);

// Active computation: adjoint of y propagated
// to adjoints of x1 and x2

dco::derivative(y) = 1.0;

foo<dco::ntr, false> (x1, x2, a, Vy);

double al x1 = dco::derivative(xl);

double al x2 = dco::derivative (x2);

"normal’ passive types

Benetfits of the New dco/c++ Type

The type makes it much easier to produce “hand written adjoints™:

e It handles the tedious, error-prone differentiation and adjoint prop-
agation of blocks of straight-line code

e Changes to these blocks are straightforward: adjoints are always in
sync

e Users only focus on the overall data flow reversal and dco/c++’s
tape can be used for this (if appropriate)

e Complexities of C++ types are automatically handled

Test Code 1: Euler Stepping of a Single Local Vol Path

The new type was tested on an Euler scheme for a single sample path
in a local volatility model with the volatility surface expressed as a cu-
bic spline. None of the compilers struggled with this fairly typical
finance code. The runtime was compared to that of a hand-written ad-
joint (all times were scaled by the primal runtime). Note the dco/c++
tape 1s currently not supported in CUDA, whereas the new type is.

Test Code 2: Spherical Harmonic Function

To test the robustness of the new type we applied it to a spherical har-
monic function from computational geometry. The code has 4 inputs,
1 output, 1s 80 lines long and has 330 edges (and numerous sub-trees)
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in its binary Directed Acyclic Graph. Producing an efficient metaprogram-
instantiated adjoint entails a phenomenal amount of analysis by the
compilers and they struggled. All the compilers produced the correct
answer, however only clang optimized the meta-program output fully
(Linux nvce 7.0 failed to compile due to a compiler bug). More work 1s
needed to optimize the meta-program for such large blocks of straight-
line code, and this process 1s already underway.

Relative Runtimes (Primal vs Adjoint) for Test Code 1

Primal HE}nd— New
Compiler . dco/c++| written |dco/c++
Runtime ..
Adjoint type
Linux
gcc4.7.2 1 7.42X 2.11x 2.40x
clang 3.4 1 8.42x 2.07x 2.17x
icc 15.0.2 1 8.15x 2.25x 2.37x
nvce 7.0 1 — 2.84x 2.58x
Windows
icl 15.0.1 1 8.60x 2.47x 2.57x
Visual Studio 2013 Not C++11 compliant: compilation fails

nvce 7.0 Not C++11 compliant: compilation fails

Relative Runtimes (Primal vs Adjoint) for Test Code 2

Primal Hand- New
Compiler . dco/c++| written |dco/c++
Runtime ..
Adjoint type
Linux
clang 3.4 1 10.52x 2.35x 2.773x
gcc 4.7.2 1 17.773x 1.85x 8.00x
icc 15.0.2 1 17.21x 1.76x 11.58
nvce 7.0 Compilation fails due to compiler bug
Windows
icl 15.0.1 1 19.93x 1.45x 12.79x
Visual Studio 2013 Not C++11 compliant: compilation fails
nvce 7.0 Not C++11 compliant: compilation fails
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