NAG C Library Chapter Introduction

f16 – NAG Interface to BLAS

Contents
1 Scope of the Chapter .. 2
2 Background to the Problems .. 2
3 Recommendations on Choice and Use of Available Functions 2
4 Index .. 2
5 Functions Withdrawn or Scheduled for Withdrawal 4
6 References .. 4
1 Scope of the Chapter

This chapter is concerned with basic linear algebra functions which perform elementary algebraic operations involving vectors and matrices.

2 Background to the Problems

The functions in this chapter follow the specification of The BLAS Technical Forum Standard (2001). They are called extensively as auxiliaries by functions in other chapters of the NAG Library, especially in the linear algebra chapters. They are intended to be useful building-blocks for users of the Library who are developing their own applications.

The functions fall into three main groups: (1) scalar and vector operations, also referred to as Level-1 BLAS; (2) matrix-vector operations or Level-2 BLAS; (3) matrix operations which includes single matrix operations (Level-2 BLAS), matrix-matrix operations (Level-3 BLAS) and data movement operations on matrices. The terminology reflects the number of operations involved, so for example a Level-2 function involves $O(n^2)$ operations, for vectors and matrices of order n.

In many implementations of the NAG Library, the functions in this chapter serve as interfaces to an efficient machine-specific implementation of the BLAS, usually provided by the vendor of the machine. Such implementations are stringently tested before being used with the NAG Library, to ensure that they correctly meet the specifications of the BLAS, and that they return the desired accuracy.

3 Recommendations on Choice and Use of Available Functions

The functions in this chapter make available only some of the Basic Linear Algebra Subprograms which carry out the low level operations required by linear algebra applications. These will not normally be needed by the general user. The purpose of each function is described by its individual document.

It should be noted that, in some cases, The BLAS Technical Forum Standard (2001) extends the functionality of earlier BLAS specifications. For example, nag_daxpy (f06ecc) carrying out the operation $y \leftarrow \alpha x + y$ is replaced by nag_daxpby (f16ecc) which performs the operation $y \leftarrow \alpha x + \beta y$.

The operator arguments diag, norm, order, side, trans and uplo are defined as enumeration types.

The order argument allows for 2D arrays to be supplied in either row or column ordering. The precise meaning of this for the packed and banded matrix storage schemes which are used by some of the functions in this chapter is described in the f07 and f08 Chapter Introductions.

Invalid values of arguments cause an error message to be returned via the NAG error handler fail.

4 Index

Matrix operations:
- Complex matrices,
 - matrix copy,
 - complex rectangular matrix ... nag_zge_copy (f16tfc)
 - complex triangular matrix .. nag_ztr_copy (f16tec)
 - real triangular matrix .. nag_dtr_copy (f16qec)
 - matrix initialization,
 - complex triangular matrix .. nag_ztr_load (f16tgc)
 - real triangular matrix .. nag_dtr_load (f16qgc)
 - rectangular matrix ... nag_zge_load (f16thc)
 - matrix-matrix product,
 - one matrix Hermitian ... nag_zhemm (f16zcc)
 - one matrix symmetric ... nag_zsymm (f16ztc)
 - triangular matrix ... nag_ztrmm (f16zfc)
f16 – NAG Interface to BLAS

Introduction – f16

Matrix-vector operations:
- Complex matrix and vector(s),
 - compute a norm or the element of largest absolute value,
 - band matrix .. nag_zgb_norm (f16ubc)
 - general matrix .. nag_zge_norm (f16uc)
 - Hermitian band matrix .. nag_zhb_norm (f16uc)
 - Hermitian matrix ... nag_zhe_norm (f16uc)
 - Hermitian matrix, packed form nag_zhp_norm (f16uc)
 - symmetric matrix ... nag_zsy_norm (f16ufc)
 - symmetric matrix, packed form nag_zsp_norm (f16ugfc)
 - matrix-vector product,
 - Hermitian band matrix nag_zhbmv (f16sdcc)
 - Hermitian matrix .. nag_zhemv (f16scc)
 - Hermitian packed matrix nag_zhpmv (f16sec)
 - rectangular band matrix nag_zgbmv (f16sbcc)
 - rectangular matrix ... nag_zgemv (f16scf)
 - symmetric matrix .. nag_zsymv (f16scc)
 - symmetric packed matrix nag_zspmv (f16scrc)
 - triangular band matrix nag_ztbmv (f16sgc)
 - triangular matrix .. nag_ztrmv (f16sfcc)
 - triangular packed matrix nag_ztpmv (f16shc)
- rank-1 update,
 - Hermitian matrix .. nag_zher (f16spc)
 - Hermitian packed matrix nag_zhpr (f16scc)
 - rectangular matrix, unconjugated vector nag_zger (f16smc)
- rank-2 update,
 - Hermitian matrix .. nag_zher2 (f16src)
 - Hermitian packed matrix nag_zhpr2 (f16sscc)
- solution of a system of equations,
 - triangular band matrix nag_ztbsv (f16skc)
 - triangular matrix .. nag_ztrsv (f16sjc)
 - triangular packed matrix nag_ztpsv (f16sclc)
Real matrices,
- matrix copy .. nag_dge_copy (f16qfc)
- matrix initialization,
 - rectangular .. nag_dge_load (f16qhc)
 - one matrix symmetric .. nag_dsymm (f16ycc)
 - one matrix triangular .. nag_dtrmm (f16yfc)
 - rectangular matrices .. nag_dgemm (f16ayc)
 - rank-2 update of a symmetric matrix nag_dsyr2k (f16yrc)
- rank-k update of a symmetric matrix nag_dsymrk (f16ypc)
- solution of triangular systems of equations nag_dtrsm (f16yjc)
- update of a symmetric matrix nag_dsyrk (f16yrc)
 - k update of a symmetric matrix nag_dsyrk (f16ypc)
 - k update of a symmetric matrix nag_dsyrk (f16yrc)
- compute a norm or the element of largest absolute value,
 - band matrix .. nag_dgb_norm (f16rbc)
 - general matrix .. nag_dge_norm (f16rac)
 - symmetric band matrix .. nag_dsb_norm (f16rec)
 - symmetric matrix ... nag_dsy_norm (f16rcc)
 - symmetric matrix, packed form nag_dsp_norm (f16rdc)
 - triangular matrix .. nag_ztrsv (f16sjc)
 - triangular packed matrix nag_ztpsv (f16sclc)
 - triangular packed matrix nag_ztpmv (f16shc)
 - triangular packed matrix nag_ztpmv (f16shc)
 - triangular packed matrix nag_ztpmv (f16shc)
matrix-vector product,
 rectangular band matrix ... nag_dgbmv (f16pbc)
 rectangular matrix ... nag_dgemv (f16pac)
 symmetric band matrix ... nag_dsbbmv (f16pdc)
 symmetric matrix ... nag_dsymv (f16pc)
 symmetric packed matrix ... nag_dpmpsv (f16pec)
 triangular band matrix ... nag_dtbmv (f16pgc)
 triangular matrix ... nag_dtrmv (f16pfcc)
 triangular packed matrix ... nag_dtpmv (f16phc)

rank-1 update,
 rectangular matrix ... nag_dger (f16pmc)
 symmetric matrix ... nag_dsyr (f16ppc)
 symmetric packed matrix ... nag_dspr (f16pqc)
rank-2 update,
 symmetric matrix ... nag_dsyr2 (f16prc)
 symmetric packed matrix ... nag_dspr2 (f16psc)

solution of a system of equations,
 triangular matrix ... nag_dtrsv (f16pjc)

solution of system of equations,
 triangular band matrix ... nag_dtbsv (f16pkc)
 triangular packed matrix ... nag_dtpsv (f16plc)

Scalar and Vector operations:
 Complex vector(s),
 broadcast a scalar into a vector ... nag_zload (f16hbc)
 Integer vector(s),
 broadcast a scalar into a vector ... nag_iload (f16dbc)
 Real vector(s),
 broadcast a scalar into a vector ... nag_dload (f16fbc)
 scale and add two vectors ... nag_daxpby (f16ecc)

5 Functions Withdrawn or Scheduled for Withdrawal

None.

6 References