﻿ g02ba Method
g02ba computes means and standard deviations of variables, sums of squares and cross-products of deviations from means, and Pearson product-moment correlation coefficients for a set of data.

Syntax

C#
```public static void g02ba(
int n,
int m,
double[,] x,
double[] xbar,
double[] std,
double[,] ssp,
double[,] r,
out int ifail
)```
Visual Basic
```Public Shared Sub g02ba ( _
n As Integer, _
m As Integer, _
x As Double(,), _
xbar As Double(), _
std As Double(), _
ssp As Double(,), _
r As Double(,), _
<OutAttribute> ByRef ifail As Integer _
)```
Visual C++
```public:
static void g02ba(
int n,
int m,
array<double,2>^ x,
array<double>^ xbar,
array<double>^ std,
array<double,2>^ ssp,
array<double,2>^ r,
[OutAttribute] int% ifail
)```
F#
```static member g02ba :
n : int *
m : int *
x : float[,] *
xbar : float[] *
std : float[] *
ssp : float[,] *
r : float[,] *
ifail : int byref -> unit
```

Parameters

n
Type: System..::..Int32
On entry: $n$, the number of observations or cases.
Constraint: ${\mathbf{n}}\ge 2$.
m
Type: System..::..Int32
On entry: $m$, the number of variables.
Constraint: ${\mathbf{m}}\ge 2$.
x
Type: array<System..::..Double,2>[,](,)[,][,]
An array of size [dim1, m]
Note: dim1 must satisfy the constraint: $\mathrm{dim1}\ge {\mathbf{n}}$
On entry: ${\mathbf{x}}\left[\mathit{i}-1,\mathit{j}-1\right]$ must be set to ${x}_{\mathit{i}\mathit{j}}$, the $\mathit{i}$th observation on the $\mathit{j}$th variable, for $\mathit{i}=1,2,\dots ,n$ and $\mathit{j}=1,2,\dots ,m$.
xbar
Type: array<System..::..Double>[]()[][]
An array of size [m]
On exit: the mean value, ${\stackrel{-}{x}}_{\mathit{j}}$, of the $\mathit{j}$th variable, for $\mathit{j}=1,2,\dots ,m$.
std
Type: array<System..::..Double>[]()[][]
An array of size [m]
On exit: the standard deviation, ${s}_{\mathit{j}}$, of the $\mathit{j}$th variable, for $\mathit{j}=1,2,\dots ,m$.
ssp
Type: array<System..::..Double,2>[,](,)[,][,]
An array of size [dim1, m]
Note: dim1 must satisfy the constraint: $\mathrm{dim1}\ge {\mathbf{m}}$
On exit: ${\mathbf{ssp}}\left[\mathit{j}-1,\mathit{k}-1\right]$ is the cross-product of deviations ${S}_{\mathit{j}\mathit{k}}$, for $\mathit{j}=1,2,\dots ,m$ and $\mathit{k}=1,2,\dots ,m$.
r
Type: array<System..::..Double,2>[,](,)[,][,]
An array of size [dim1, m]
Note: dim1 must satisfy the constraint: $\mathrm{dim1}\ge {\mathbf{m}}$
On exit: ${\mathbf{r}}\left[\mathit{j}-1,\mathit{k}-1\right]$ is the product-moment correlation coefficient ${R}_{\mathit{j}\mathit{k}}$ between the $\mathit{j}$th and $\mathit{k}$th variables, for $\mathit{j}=1,2,\dots ,m$ and $\mathit{k}=1,2,\dots ,m$.
ifail
Type: System..::..Int32%
On exit: ${\mathbf{ifail}}={0}$ unless the method detects an error or a warning has been flagged (see [Error Indicators and Warnings]).

Description

The input data consist of $n$ observations for each of $m$ variables, given as an array
 $xij, i=1,2,…,nn≥2,j=1,2,…,mm≥2,$
where ${x}_{ij}$ is the $i$th observation on the $j$th variable.
The quantities calculated are:
(a) Means:
 $x-j=1n∑i=1nxij, j=1,2,…,m.$
(b) Standard deviations:
 $sj=1n-1∑i=1nxij-x-j2, j=1,2,…,m.$
(c) Sums of squares and cross-products of deviations from means:
 $Sjk=∑i=1nxij-x-jxik-x-k, j,k=1,2,…,m.$
(d) Pearson product-moment correlation coefficients:
 $Rjk=SjkSjjSkk, j,k=1,2,…,m.$
If ${S}_{jj}$ or ${S}_{kk}$ is zero, ${R}_{jk}$ is set to zero.

None.

Error Indicators and Warnings

Errors or warnings detected by the method:
Some error messages may refer to parameters that are dropped from this interface (LDX, LDSSP, LDR) In these cases, an error in another parameter has usually caused an incorrect value to be inferred.
${\mathbf{ifail}}=1$
 On entry, ${\mathbf{n}}<2$.
${\mathbf{ifail}}=2$
 On entry, ${\mathbf{m}}<2$.
${\mathbf{ifail}}=-9000$
An error occured, see message report.
${\mathbf{ifail}}=-6000$
Invalid Parameters $〈\mathit{\text{value}}〉$
${\mathbf{ifail}}=-4000$
Invalid dimension for array $〈\mathit{\text{value}}〉$
${\mathbf{ifail}}=-8000$
Negative dimension for array $〈\mathit{\text{value}}〉$
${\mathbf{ifail}}=-6000$
Invalid Parameters $〈\mathit{\text{value}}〉$

Accuracy

g02ba does not use additional precision arithmetic for the accumulation of scalar products, so there may be a loss of significant figures for large $n$.

Parallelism and Performance

None.

The time taken by g02ba depends on $n$ and $m$.
The method uses a two-pass algorithm.

Example

This example reads in a set of data consisting of five observations on each of three variables. The means, standard deviations, sums of squares and cross-products of deviations from means, and Pearson product-moment correlation coefficients for all three variables are then calculated and printed.

Example program (C#): g02bae.cs

Example program data: g02bae.d

Example program results: g02bae.r