NAG Library Routine Document
 F01GBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F01GBF computes the action of the matrix exponential $e^{t A}$, on the matrix B, where A is a real n by n matrix, B is a real n by m matrix and t is a real scalar. It uses reverse communication for evaluating matrix products, so that the matrix A is not accessed explicitly.

2 Specification

```
SUBROUTINE FO1GBF (IREVCM, N, M, B, LDB, T, TR, B2, LDB2, X, LDX, Y, LDY,
    P, R, Z, COMM, ICOMM, IFAIL)
INTEGER IREVCM, N, M, LDB, LDB2, LDX, LDY, ICOMM(2*N+40), IFAIL
REAL (KIND=nag_wp) B (LDB,*), T, TR, B2 (LDB2,*), X(LDX,*), Y(LDY,*), P(N),
    R(N), Z(N), COMM(N*M+3*N+12)
```


3 Description

$e^{t A} B$ is computed using the algorithm described in Al-Mohy and Higham (2011) which uses a truncated Taylor series to compute the $e^{t A} B$ without explicitly forming $e^{t A}$.
The algorithm does not explicity need to access the elements of A; it only requires the result of matrix multiplications of the form $A X$ or $A^{\mathrm{T}} Y$. A reverse communication interface is used, in which control is returned to the calling program whenever a matrix product is required.

4 References

Al-Mohy A H and Higham N J (2011) Computing the action of the matrix exponential, with an application to exponential integrators SIAM J. Sci. Statist. Comput. 33(2) 488-511
Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and reentries, and a final exit, as indicated by the parameter IREVCM. Between intermediate exits and reentries, all parameters other than $B 2, X, Y, P$ and R must remain unchanged.

```
1: IREVCM - INTEGER Input/Output
```

On initial entry: must be set to 0 .
On intermediate exit: $\operatorname{IREVCM}=1,2,3,4$ or 5 . The calling program must:
(a) if IREVCM $=1$: evaluate $B_{2}=A B$, where B_{2} is an n by m matrix, and store the result in B 2 ; if IREVCM $=2$: evaluate $Y=A X$, where X and Y are n by 2 matrices, and store the result in Y;
if $\operatorname{IREVCM}=3$: evaluate $X=A^{\mathrm{T}} Y$ and store the result in X;
if $\operatorname{IREVCM}=4$: evaluate $p=A z$ and store the result in P ;
if IREVCM $=5$: evaluate $r=A^{\mathrm{T}} z$ and store the result in R .
(b) call F 01 GBF again with all other parameters unchanged.

On final exit: $\operatorname{IREVCM}=0$.

2: N - INTEGER
Input
On entry: n, the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.
3: M - INTEGER
Input
On entry: the number of columns of the matrix B.
Constraint: $\mathrm{M} \geq 0$.
4: $\quad \mathrm{B}(\mathrm{LDB}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input/Output
Note: the second dimension of the array B must be at least M.
On initial entry: the n by m matrix B.
On intermediate exit: if IREVCM $=1$, contains the n by m matrix B.
On intermediate re-entry: must not be changed.
On final exit: the n by m matrix $e^{t A} B$.
5: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F01GBF is called.

Constraint: $\mathrm{LDB} \geq \max (1, \mathrm{~N})$.
6: $\quad \mathrm{T}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp)
On entry: the scalar t.
7: \quad TR - REAL (KIND=nag_wp)
Input
On entry: the trace of A. If this is not available then any number can be supplied (0 is a reasonable default); however, in the trivial case, $n=1$, the result $e^{\operatorname{TR} t} B$ is immediately returned in the first row of B. See Section 8 .

8: $\quad \mathrm{B} 2(\mathrm{LDB} 2, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array B2 must be at least M.
On initial entry: need not be set.
On intermediate re-entry: if IREVCM $=1$, must contain $A B$.
On final exit: the array is undefined.
9: LDB2 - INTEGER
Input
On initial entry: the first dimension of the array B2 as declared in the (sub)program from which F01GBF is called.

Constraint: $\mathrm{LDB} 2 \geq \max (1, \mathrm{~N})$.
10: $\mathrm{X}(\mathrm{LDX}, *)$ - REAL (KIND=$=$ nag_wp) array
Input/Output
Note: the second dimension of the array X must be at least 2.
On initial entry: need not be set.
On intermediate exit: if $\operatorname{IREVCM}=2$, contains the current n by 2 matrix X.
On intermediate re-entry: if IREVCM $=3$, must contain $A^{\mathrm{T}} Y$.
On final exit: the array is undefined.

11: LDX - INTEGER
Input
On entry: the first dimension of the array X as declared in the (sub)program from which F 01 GBF is called.

Constraint: $\operatorname{LDX} \geq \max (1, \mathrm{~N})$.
12: $\mathrm{Y}(\mathrm{LDY}, *)$ - REAL (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array Y must be at least 2 .
On initial entry: need not be set.
On intermediate exit: if $\operatorname{IREVCM}=3$, contains the current n by 2 matrix Y.
On intermediate re-entry: if IREVCM $=2$, must contain $A X$.
On final exit: the array is undefined.
13: LDY - INTEGER
Input
On entry: the first dimension of the array Y as declared in the (sub)program from which F01GBF is called.

Constraint: LDY $\geq \max (1, \mathrm{~N})$.
14: $\quad \mathrm{P}(\mathrm{N})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input/Output
On initial entry: need not be set.
On intermediate re-entry: if IREVCM $=4$, must contain $A z$.
On final exit: the array is undefined.
15: $\quad \mathrm{R}(\mathrm{N})$ - REAL (KIND=nag_wp) array
Input/Output
On initial entry: need not be set.
On intermediate re-entry: if IREVCM $=5$, must contain $A^{\mathrm{T}} z$.
On final exit: the array is undefined.
16: $\quad \mathrm{Z}(\mathrm{N})$ - REAL (KIND=nag_wp) array
Input/Output
On initial entry: need not be set.
On intermediate exit: if IREVCM $=4$ or 5 , contains the vector z.
On intermediate re-entry: must not be changed.
On final exit: the array is undefined.
17: $\quad \operatorname{COMM}(\mathrm{N} \times \mathrm{M}+3 \times \mathrm{N}+12)-$ REAL $(\mathrm{KIND}=$ nag_wp $)$ array
Communication Array
$\operatorname{ICOMM}(2 \times \mathrm{N}+40)-$ INTEGER array
Communication Array
IFAIL - INTEGER
Input/Output
On initial entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, because for this routine the values of the output parameters may be useful even if IFAIL $\neq 0$ on exit, the recommended value is -1 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
Note: this failure should not occur, and suggests that the routine has been called incorrectly. An unexpected internal error occurred when estimating a matrix norm.

IFAIL $=2$
An unexpected internal error has occurred. Please contact NAG.
IFAIL $=-1$
On initial entry, $\operatorname{IREVCM}=\langle$ value \rangle.
Constraint: IREVCM $=0$.
On intermediate re-entry, $\operatorname{IREVCM}=\langle$ value \rangle.
Constraint: $\operatorname{IREVCM}=1,2,3,4$ or 5 .
IFAIL $=-2$
On initial entry, $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{N} \geq 0$.
IFAIL $=-3$
On initial entry, $\mathrm{M}=\langle$ value \rangle.
Constraint: $\mathrm{M} \geq 0$.
IFAIL $=-5$
On initial entry, $\mathrm{LDB}=\langle$ value \rangle and $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{LDB} \geq \max (1, \mathrm{~N})$.
IFAIL $=-9$
On initial entry, $\mathrm{LDB} 2=\langle$ value \rangle and $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{LDB} 2 \geq \max (1, \mathrm{~N})$.
IFAIL $=-11$
On initial entry, $\mathrm{LDX}=\langle$ value \rangle and $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{LDX} \geq \max (1, \mathrm{~N})$.
IFAIL $=-13$
On initial entry, LDY $=\langle$ value \rangle and $\mathrm{N}=\langle$ value \rangle.
Constraint: $\operatorname{LDY} \geq \max (1, \mathrm{~N})$.

$7 \quad$ Accuracy

For a symmetric matrix A (for which $A^{\mathrm{T}}=A$) the computed matrix $e^{t A} B$ is guaranteed to be close to the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-symmetric matrices. See Section 4 of Al-Mohy and Higham (2011) for details and further discussion.

8 Further Comments

8.1 Use of $\boldsymbol{\operatorname { T r }}(\boldsymbol{A})$

The elements of A are not explicitly required by F01GBF. However, the trace of A is used in the preprocessing phase of the algorithm. If $\operatorname{Tr}(A)$ is not available to the calling subroutine then any number can be supplied (0 is recommended). This will not affect the stability of the algorithm, but it may reduce its efficiency.

8.2 When to use F01GBF

F01GBF is designed to be used when A is large and sparse. Whenever a matrix multiplication is required, the routine will return control to the calling program so that the multiplication can be done in the most efficient way possible. Note that $e^{t A} B$ will not, in general, be sparse even if A is sparse.
If A is small and dense then F 01 GAF can be used to compute $e^{t A} B$ without the use of a reverse communication interface.

The complex analog of F01GBF is F01HBF.

8.3 Use in Conjunction with NAG Library Routines

To compute $e^{t A} B$, the following skeleton code can normally be used:

```
revcm: Do
    Call FO1GBF(IREVCM,N,M,B,LDB,T,TR,B2,LDB2,X,LDX,Y,LDY,P,R,Z, &
                COMM,ICOMM,IFAIL)
    If (IREVCM == O) Then
        Exit revcm
    Else If (IREVCM == 1) Then
        .. Code to compute B2=AB ..
    Else If (IREVCM == 2) Then
        .. Code to compute Y=AX ..
    Else If (IREVCM == 3) Then
        .. Code to compute X=A^T Y ..
    Else If (IREVCM == 4) Then
        .. Code to compute P=AZ ..
    Else If (IREVCM == 5) Then
        .. Code to compute R=A^T Z ..
    End If
End Do revcm
```

The code used to compute the matrix products will vary depending on the way A is stored. If all the elements of A are stored explicitly, then F06YAF (DGEMM)) can be used. If A is triangular then F06YFF (DTRMM) should be used. If A is symmetric, then F06YCF (DSYMM) should be used. For sparse A stored in coordinate storage format F11XAF and F11XEF can be used.

9 Example

This example computes $e^{t A} B$, where

$$
\begin{gathered}
A=\left(\begin{array}{rrrr}
0.4 & -0.2 & 1.3 & 0.6 \\
0.3 & 0.8 & 1.0 & 1.0 \\
3.0 & 4.8 & 0.2 & 0.7 \\
0.5 & 0.0 & -5.0 & 0.7
\end{array}\right), \\
B=\left(\begin{array}{rr}
0.1 & 1.1 \\
1.7 & -0.2 \\
0.5 & 1.0 \\
0.4 & -0.2
\end{array}\right),
\end{gathered}
$$

and

$$
t=-0.2
$$

9.1 Program Text

Program folgbfe
! FO1GBF Example Program Text
! Mark 24 Release. NAG Copyright 2012.
! .. Use Statements ..
Use nag_library, Only: dgemm, f01gbf, nag_wp, x04caf
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter $\quad::$ nin $=5$, nout $=6$
! .. Local Scalars ..
Real (Kind=nag_wp) :: t, tr
Integer $:: i^{\prime}, ~ i f a i l, ~ i r e v c m, ~ l d a, ~ l d b, ~ l d b 2, ~ \& ~$ ldx, ldy, m, n
.. Local Arrays ..
Real (Kind=nag_wp), Allocatable : : $\mathrm{a}(:, \mathrm{:})$, b(:,:), b2(:,:), comm(:), \& $\mathrm{p}(:), \mathrm{r}(:), \mathrm{x}(:,:), \mathrm{y}(:,:), \mathrm{z}(:)$
Integer, Allocatable : icomm(:)
! .. Executable Statements ..
Write (nout,*) 'FO1GBF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
Read (nin,*) n, m, t
lda $=\mathrm{n}$
$1 \mathrm{db}=\mathrm{n}$
ldb2 $=n$
$l d x=n$
ldy $=\mathrm{n}$
! Allocate required memory
Allocate (a(lda,n))
Allocate $(\mathrm{b}(\mathrm{l} \mathrm{d}, \mathrm{m}))$
Allocate (b2(ldb2,m))
Allocate $(\operatorname{comm}(n * m+3 * n+12))$
Allocate (x(ldx,2))
Allocate $(y(l d y, 2))$
Allocate (icomm(2*n+40))
Allocate (p(n))
Allocate (r(n))
Allocate (z(n))
! Read A from data file
Read (nin,*) (a(i,1:n),i=1,n)
! Read B from data file
Read (nin,*) (b (i, 1:m), i=1,n)
! Compute the trace of A
tr = 0.0_nag_wp
Do i $=1$, n
tr $=t r+a(i, i)$
End Do
! Find $\exp (t A) B$
irevcm = 0
ifail = 0
! Initial call to fOlgbf reverse communication interface
revcm: Do
Call f01gbf(irevcm,n,m,b,ldb,t,tr,b2,ldb2,x,ldx,y,ldy,p,r,z,comm, \&

```
        icomm,ifail)
        If (irevcm==0) Then
        Exit revcm
        Else If (irevcm==1) Then
    Compute AB and store in B2
    Call dgemm('N','N',n,m,n,1.0_nag_wp,a,lda,b,ldb,0.0_nag_wp,b2,ldb2)
        Else If (irevcm==2) Then
    Compute AX and store in Y
    Call dgemm('N','N',n,2,n,1.0_nag_wp,a,lda,x,ldx,0.0_nag_wp,y,ldy)
        Else If (irevcm==3) Then
    Compute A^T Y and store in X
    call dgemm('T','N',n,2,n,1.0_nag_wp,a,lda,y,ldy,0.0_nag_wp,x,ldx)
    Else If (irevcm==4) Then
    Compute AZ and store in P
    Call dgemm('N','N',n,1,n,1.0_nag_wp,a,lda,z,n,0.0_nag_wp,p,n)
        Else
    Compute A^T Z and store in R
    Call dgemm('T','N',n,1,n,1.0_nag_wp,a,lda,z,n,0.0_nag_wp,r,n)
        End If
    End Do revcm
    If (ifail==0) Then
        Print solution
        ifail = O
        Call x04caf('G','N',n,m,b,ldb,'exp(tA)B',ifail)
    End If
End Program f0lgbfe
```


9.2 Program Data

```
FO1GBF Example Program Data
```

4	2	-0.2		
0.4	-0.2	1.3	0.6	
0.3	0.8	1.0	1.0	
3.0	4.8	0.2	0.7	
0.5	0.0	-5.0	0.7	: End of matrix A
0.1	1.1			
1.7	-0.2			
0.5	1.0			
0.4	-0.2			

9.3 Program Results

F01GBF Example Program Results
$\exp (t A) B$

	1	2
1	0.1933	0.7812
2	1.4423	-0.4055
3	-1.0756	0.6686
4	0.0276	0.4900

