NAG Library Function Document nag_ode_ivp_rkts_diag (d02ptc)

1 Purpose

nag_ode_ivp_rkts_diag (d02ptc) provides details about an integration performed by either nag_ode_ivp_rkts_range (d02pec) or nag_ode_ivp_rkts_onestep (d02pfc).

2 Specification

```
#include <nag.h>
#include <nagd02.h>
void nag_ode_ivp_rkts_diag (Integer *fevals, Integer *stepcost,
    double *waste, Integer *stepsok, double *hnext, Integer iwsav[],
    const double rwsav[], NagError *fail)
```


3 Description

nag_ode_ivp_rkts_diag (d02ptc) and its associated functions (nag_ode_ivp_rkts_range (d02pec), nag_ode_ivp_rkts_onestep (d02pfc), nag_ode_ivp_rkts_setup (d02pqc), nag_ode_ivp_rkts_reset_tend (d02prc), nag_ode_ivp_rkts_interp (d02psc) and nag_ode_ivp_rkts_errass (d02puc)) solve the initial value problem for a first-order system of ordinary differential equations. The functions, based on RungeKutta methods and derived from RKSUITE (see Brankin et al. (1991)), integrate

$$
y^{\prime}=f(t, y) \quad \text { given } \quad y\left(t_{0}\right)=y_{0}
$$

where y is the vector of n solution components and t is the independent variable.
After a call to nag_ode_ivp_rkts_range (d02pec) or nag_ode_ivp_rkts_onestep (d02pfc), nag_ode_ivp_rkts_diag (d02ptc) can be called to obtain information about the cost of the integration and the size of the next step.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge-Kutta codes for the initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Arguments

fevals - Integer *
Output
On exit: the total number of evaluations of f used in the integration so far; this includes evaluations of f required for the secondary integration necessary if nag_ode_ivp_rkts_setup (d02pqc) had previously been called with errass $=$ Nag_ErrorAssess_on.

2: \quad stepcost - Integer *
Output
On exit: the cost in terms of number of evaluations of f of a typical step with the method being used for the integration. The method is specified by the argument method in a prior call to nag_ode_ivp_rkts_setup (d02pqc).

3: \quad waste - double *
Output
On exit: the number of attempted steps that failed to meet the local error requirement divided by the total number of steps attempted so far in the integration. A 'large' fraction indicates that the integrator is having trouble with the problem being solved. This can happen when the problem is 'stiff' and also when the solution has discontinuities in a low-order derivative.

4: \quad stepsok - Integer *

On exit: the number of accepted steps.
5: hnext - double *
On exit: the step size the integrator will attempt to use for the next step.
$\begin{array}{lll}\text { 6: } & \mathbf{i w s a v}[\mathbf{1 3 0}] \text { - Integer } & \text { Communication Array } \\ \text { 7: } & \mathbf{r w s a v}[\mathbf{3 5 0}] \text { - const double } & \text { Communication Array }\end{array}$
Note: the communication rwsav used by the other functions in the suite must be used here however, only the first 350 elements will be referenced.
On entry: these must be the same arrays supplied in a previous call to nag_ode_ivp_rkts_range (d02pec) or nag_ode_ivp_rkts_onestep (d02pfc). They must remain unchanged between calls.

On exit: information about the integration for use on subsequent calls to nag_ode_ivp_rkts_range (d02pec) or nag_ode_ivp_rkts_onestep (d02pfc) or other associated functions.

8: fail - NagError * Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_MISSING_CALL

You cannot call this function before you have called the integrator.

NE_PREV_CALL

On entry, a previous call to the setup function has not been made or the communication arrays have become corrupted, or a catastrophic error has already been detected elsewhere.
You cannot continue integrating the problem.

NE_RK_INVALID_CALL

You have already made one call to this function after the integrator could not achieve specified accuracy.
You cannot call this function again.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

When a secondary integration has taken place, that is when global error assessment has been specified using errass $=$ Nag_ErrorAssess_on in a prior call to nag_ode_ivp_rkts_setup (d02pqc), then the approximate number of evaluations of f used in this secondary integration is given by $2 \times$ stepsok \times stepcost for method $=$ Nag_RK_4_5 or Nag_RK_7_8 and $3 \times$ stepsok \times stepcost for method $=$ Nag_RK_2_3.

10 Example

See Section 10 in nag_ode_ivp_rkts_range (d02pec), nag_ode_ivp_rkts_onestep (d02pfc), nag_ode_ivp_rkts_reset_tend (d02prc), nag_ode_ivp_rkts_interp (d02psc) and nag_ode_ivp_rkts_errass (d02puc).

