
NAG Library Function Document

nag_2d_cheb_eval (e02cbc)

1 Purpose

nag_2d_cheb_eval (e02cbc) evaluates a bivariate polynomial from the rectangular array of coefficients in
its double Chebyshev series representation.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_2d_cheb_eval (Integer mfirst, Integer mlast, Integer k, Integer l,
const double x[], double xmin, double xmax, double y, double ymin,
double ymax, double ff[], const double a[], NagError *fail)

3 Description

This function evaluates a bivariate polynomial (represented in double Chebyshev form) of degree k in
one variable, �x, and degree l in the other, �y. The range of both variables is �1 to þ1. However, these
normalized variables will usually have been derived (as when the polynomial has been computed by
nag_2d_cheb_fit_lines (e02cac), for example) from your original variables x and y by the
transformations

�x ¼ 2x� xmax þ xminð Þ
xmax � xminð Þ and �y ¼ 2y� ymax þ yminð Þ

ymax � yminð Þ :

(Here xmin and xmax are the ends of the range of x which has been transformed to the range �1 to þ1 of
�x. ymin and ymax are correspondingly for y. See Section 9). For this reason, the function has been
designed to accept values of x and y rather than �x and �y, and so requires values of xmin , etc. to be
supplied by you. In fact, for the sake of efficiency in appropriate cases, the function evaluates the
polynomial for a sequence of values of x, all associated with the same value of y.

The double Chebyshev series can be written as

Xk

i¼0

Xl

j¼0

aijTi �xð ÞTj �yð Þ;

where Ti �xð Þ is the Chebyshev polynomial of the first kind of degree i and argument �x, and Tj �yð Þ is
similarly defined. However the standard convention, followed in this function, is that coefficients in the
above expression which have either i or j zero are written 1

2aij , instead of simply aij, and the coefficient

with both i and j zero is written 1
4a0;0 .

The function first forms ci ¼
Xl

j¼0

aijTj �yð Þ, with ai;0 replaced by 1
2ai;0 , for each of i ¼ 0; 1; . . . ; k. The

value of the double series is then obtained for each value of x, by summing ci � Ti �xð Þ, with c0 replaced
by 1

2c0 , over i ¼ 0; 1; . . . ; k. The Clenshaw three term recurrence (see Clenshaw (1955)) with
modifications due to Reinsch and Gentleman (1969) is used to form the sums.

e02 – Curve and Surface Fitting e02cbc

Mark 24 e02cbc.1

../E02/e02cac.pdf

4 References

Clenshaw C W (1955) A note on the summation of Chebyshev series Math. Tables Aids Comput. 9 118–
120

Gentleman W M (1969) An error analysis of Goertzel’s (Watt’s) method for computing Fourier
coefficients Comput. J. 12 160–165

5 Arguments

1: mfirst – Integer Input
2: mlast – Integer Input

On entry: the index of the first and last x value in the array x at which the evaluation is required
respectively (see Section 9).

Constraint: mlast � mfirst.

3: k – Integer Input
4: l – Integer Input

On entry: the degree k of x and l of y, respectively, in the polynomial.

Constraint: k � 0 and l � 0.

5: x½mlast� – const double Input

On entry: x½i � 1�, for i ¼ mfirst; . . . ;mlast, must contain the x values at which the evaluation is
required.

Constraint: xmin � x½i� 1� � xmax, for all i.

6: xmin – double Input
7: xmax – double Input

On entry: the lower and upper ends, xmin and xmax , of the range of the variable x (see Section 3).

The values of xmin and xmax may depend on the value of y (e.g., when the polynomial has been
derived using nag_2d_cheb_fit_lines (e02cac)).

Constraint: xmax > xmin.

8: y – double Input

On entry: the value of the y coordinate of all the points at which the evaluation is required.

Constraint: ymin � y � ymax.

9: ymin – double Input
10: ymax – double Input

On entry: the lower and upper ends, ymin and ymax , of the range of the variable y (see Section 3).

Constraint: ymax > ymin.

11: ff½mlast� – double Output

On exit: ff ½i � 1� gives the value of the polynomial at the point xi; yð Þ, for i ¼ mfirst; . . . ;mlast.

12: a½dim� – const double Input

Note: the dimension, dim, of the array a must be at least k þ 1ð Þ � lþ 1ð Þð Þ.
On entry: the Chebyshev coefficients of the polynomial. The coefficient aij defined according to
the standard convention (see Section 3) must be in a½i� lþ 1ð Þ þ j�.

e02cbc NAG Library Manual

e02cbc.2 Mark 24

../E02/e02cac.pdf

13: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT_2

On entry, k ¼ valueh i and l ¼ valueh i.
Constraint: k � 0 and l � 0.

On entry, mfirst ¼ valueh i and mlast ¼ valueh i.
Constraint: mfirst � mlast.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

Unexpected failure in internal call to nag_1d_cheb_eval (e02aec).

NE_REAL_2

On entry, xmin ¼ valueh i and xmax ¼ valueh i.
Constraint: xmin < xmax.

On entry, y ¼ valueh i and ymax ¼ valueh i.
Constraint: y � ymax.

On entry, y ¼ valueh i and ymin ¼ valueh i.
Constraint: y � ymin.

On entry, ymin ¼ valueh i and ymax ¼ valueh i.
Constraint: ymin < ymax.

NE_REAL_ARRAY

On entry, I ¼ valueh i, x½I � 1� ¼ valueh i and xmax ¼ valueh i.
Constraint: x½I � 1� � xmax.

On entry, I ¼ valueh i, x½I � 1� ¼ valueh i and xmin ¼ valueh i.
Constraint: x½I � 1� � xmin.

7 Accuracy

The method is numerically stable in the sense that the computed values of the polynomial are exact for a
set of coefficients which differ from those supplied by only a modest multiple of machine precision.

8 Parallelism and Performance

nag_2d_cheb_eval (e02cbc) is threaded by NAG for parallel execution in multithreaded implementations
of the NAG Library.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

e02 – Curve and Surface Fitting e02cbc

Mark 24 e02cbc.3

../GENINT/essint.pdf
../GENINT/essint.pdf
../E02/e02aec.pdf

9 Further Comments

The time taken is approximately proportional to kþ 1ð Þ � mþ lþ 1ð Þ, where m ¼ mlast�mfirstþ 1,
the number of points at which the evaluation is required.

This function is suitable for evaluating the polynomial surface fits produced by the function
nag_2d_cheb_fit_lines (e02cac), which provides the array a in the required form. For this use, the
values of ymin and ymax supplied to the present function must be the same as those supplied to
nag_2d_cheb_fit_lines (e02cac). The same applies to xmin and xmax if they are independent of y. If they
vary with y, their values must be consistent with those supplied to nag_2d_cheb_fit_lines (e02cac) (see
Section 9 in nag_2d_cheb_fit_lines (e02cac)).

The arguments mfirst and mlast are intended to permit the selection of a segment of the array x which is
to be associated with a particular value of y, when, for example, other segments of x are associated with
other values of y. Such a case arises when, after using nag_2d_cheb_fit_lines (e02cac) to fit a set of data,
you wish to evaluate the resulting polynomial at all the data values. In this case, if the arguments x, y,
mfirst and mlast of the present function are set respectively (in terms of arguments of

nag_2d_cheb_fit_lines (e02cac)) to x, y Sð Þ, 1þ
Xs�1

i¼1

m ið Þ and
Xs

i¼1

m ið Þ, the function will compute

values of the polynomial surface at all data points which have y½S � 1� as their y coordinate (from which
values the residuals of the fit may be derived).

10 Example

This example reads data in the following order, using the notation of the argument list above:

N k l
a½i� 1�; for i ¼ 1; 2; . . . ; k þ 1ð Þ � lþ 1ð Þ
ymin ymax
y½i� 1� M i� 1ð Þ xmin½i� 1� xmax½i� 1� X1 ið Þ XM ið Þ; for i ¼ 1; 2; . . . ; N:

For each line y ¼ y½i� 1� the polynomial is evaluated at M ið Þ equispaced points between X1 ið Þ and
XM ið Þ inclusive.

10.1 Program Text

/* nag_2d_cheb_eval (e02cbc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
* Mark 7b revised, 2004.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{

/* Scalars */
double x1, xm, xmax, xmin, y, ymax, ymin;
Integer exit_status, i, j, k, l, m, n, ncoef, one;
NagError fail;

/* Arrays */
double *a = 0, *ff = 0, *x = 0;

INIT_FAIL(fail);

exit_status = 0;
printf("nag_2d_cheb_eval (e02cbc) Example Program Results\n");

/* Skip heading in data file */

e02cbc NAG Library Manual

e02cbc.4 Mark 24

../E02/e02cac.pdf
../E02/e02cac.pdf
../E02/e02cac.pdf
../E02/e02cac.pdf
../E02/e02cac.pdf
../E02/e02cac.pdf
../E02/e02cac.pdf
../E02/e02cac.pdf
../E02/e02cac.pdf
../E02/e02cac.pdf
../E02/e02cac.pdf

scanf("%*[^\n] ");
while (scanf("%ld%ld%ld%*[^\n] ", &n, &k, &l) != EOF)

{
/* Allocate array a */
ncoef = (k + 1) * (l + 1);
if (!(a = NAG_ALLOC(ncoef, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

for (i = 0; i < ncoef; ++i)
scanf("%lf", &a[i]);

scanf("%*[^\n] ");
scanf("%lf%lf%*[^\n] ", &ymin, &ymax);

for (i = 0; i < n; ++i)
{

scanf("%lf%ld%lf%lf%lf%lf%*[^\n] ",
&y, &m, &xmin, &xmax, &x1, &xm);

/* Allocate arrays x and ff */
if (!(x = NAG_ALLOC(m, double)) ||

!(ff = NAG_ALLOC(m, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

for (j = 0; j < m; ++j)
x[j] = x1 + (xm - x1) * (double) j / (double)(m - 1);

one = 1;
/* nag_2d_cheb_eval (e02cbc).
* Evaluation of fitted polynomial in two variables
*/

nag_2d_cheb_eval(one, m, k, l, x, xmin, xmax, y, ymin, ymax,
ff, a, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_2d_cheb_eval (e02cbc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("\n");
printf("y = %13.4e\n", y);
printf("\n");
printf(" i x(i) Poly(x(i),y)\n");
for (j = 0; j < m; ++j)

printf("%3ld%13.4e%13.4e\n", j, x[j], ff[j]);

NAG_FREE(ff);
NAG_FREE(x);

}

NAG_FREE(a);
}

END:
NAG_FREE(a);
NAG_FREE(ff);
NAG_FREE(x);

return exit_status;
}

e02 – Curve and Surface Fitting e02cbc

Mark 24 e02cbc.5

10.2 Program Data

nag_2d_cheb_eval (e02cbc) Example Program Data
3 3 2

15.34820
5.15073
0.10140
1.14719
0.14419

-0.10464
0.04901

-0.00314
-0.00699
0.00153

-0.00033
-0.00022

0.0 4.0
1.0 9 0.1 4.5 0.5 4.5
1.5 8 0.225 4.25 0.5 4.0
2.0 8 0.4 4.0 0.5 4.0

10.3 Program Results

nag_2d_cheb_eval (e02cbc) Example Program Results

y = 1.0000e+00

i x(i) Poly(x(i),y)
0 5.0000e-01 2.0812e+00
1 1.0000e+00 2.1888e+00
2 1.5000e+00 2.3018e+00
3 2.0000e+00 2.4204e+00
4 2.5000e+00 2.5450e+00
5 3.0000e+00 2.6758e+00
6 3.5000e+00 2.8131e+00
7 4.0000e+00 2.9572e+00
8 4.5000e+00 3.1084e+00

y = 1.5000e+00

i x(i) Poly(x(i),y)
0 5.0000e-01 2.6211e+00
1 1.0000e+00 2.7553e+00
2 1.5000e+00 2.8963e+00
3 2.0000e+00 3.0444e+00
4 2.5000e+00 3.2002e+00
5 3.0000e+00 3.3639e+00
6 3.5000e+00 3.5359e+00
7 4.0000e+00 3.7166e+00

y = 2.0000e+00

i x(i) Poly(x(i),y)
0 5.0000e-01 3.1700e+00
1 1.0000e+00 3.3315e+00
2 1.5000e+00 3.5015e+00
3 2.0000e+00 3.6806e+00
4 2.5000e+00 3.8692e+00
5 3.0000e+00 4.0678e+00
6 3.5000e+00 4.2769e+00
7 4.0000e+00 4.4971e+00

e02cbc NAG Library Manual

e02cbc.6 Mark 24

Example Program
Evaluation of Least-squares Bi-variate Polynomial Fit

P
(x

,y
)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

y

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x

-10

-5

 0

 5

 10

 15

e02 – Curve and Surface Fitting e02cbc

Mark 24 e02cbc.7 (last)

	e02cbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Clenshaw (1955)
	Gentleman (1969)

	5 Arguments
	mfirst
	mlast
	k
	l
	x
	xmin
	xmax
	y
	ymin
	ymax
	ff
	a
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_REAL_2
	NE_REAL_ARRAY

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

