NAG Library Function Document

nag_linsys_complex_gen_norm_rcomm (f04zdc)

1 Purpose

nag_linsys_complex_gen_norm_rcomm (f04zdc) estimates the 1-norm of a complex rectangular matrix without accessing the matrix explicitly. It uses reverse communication for evaluating matrix products. The function may be used for estimating condition numbers of square matrices.

2 Specification

```
#include <nag.h>
#include <nagf04.h>
void nag_linsys_complex_gen_norm_rcomm (Integer *irevcm, Integer m,
    Integer n, Complex x[], Integer pdx, Complex y[], Integer pdy,
    double *estnrm, Integer t, Integer seed, Complex work[], double rwork[],
    Integer iwork[], NagError *fail)
```

3 Description

nag_linsys_complex_gen_norm_rcomm (f04zdc) computes an estimate (a lower bound) for the 1-norm

$$\|A\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{m} |a_{ij}| \tag{1}$$

of an m by n complex matrix $A = (a_{ij})$. The function regards the matrix A as being defined by a usersupplied 'Black Box' which, given an $n \times t$ matrix X (with $t \ll n$) or an $m \times t$ matrix Y, can return AX or $A^{H}Y$, where A^{H} is the complex conjugate transpose. A reverse communication interface is used; thus control is returned to the calling program whenever a matrix product is required.

Note: this function is not recommended for use when the elements of A are known explicitly; it is then more efficient to compute the 1-norm directly from the formula (1) above.

The main use of the function is for estimating $||B^{-1}||_1$ for a square matrix B, and hence the condition number $\kappa_1(B) = ||B||_1 ||B^{-1}||_1$, without forming B^{-1} explicitly $(A = B^{-1} \text{ above})$.

If, for example, an LU factorization of B is available, the matrix products $B^{-1}X$ and $B^{-H}Y$ required by nag_linsys_complex_gen_norm_rcomm (f04zdc) may be computed by back- and forward-substitutions, without computing B^{-1} .

The function can also be used to estimate 1-norms of matrix products such as $A^{-1}B$ and ABC, without forming the products explicitly. Further applications are described in Higham (1988).

Since $||A||_{\infty} = ||A^{H}||_{1}$, nag_linsys_complex_gen_norm_rcomm (f04zdc) can be used to estimate the ∞ -norm of A by working with A^{H} instead of A.

The algorithm used is described in Higham and Tisseur (2000).

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

Higham N J and Tisseur F (2000) A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra *SIAM J. Matrix. Anal. Appl.* **21** 1185–1201

Input/Output

Input

Input

Input

Input/Output

5 Arguments

Note: this function uses reverse communication. Its use involves an initial entry, intermediate exits and re-entries, and a final exit, as indicated by the argument irevcm. Between intermediate exits and re-entries, all arguments other than x and y must remain unchanged.

1: **irevcm** – Integer *

On initial entry: must be set to 0.

On intermediate exit: irevcm = 1 or 2, and x contains the $n \times t$ matrix X and y contains the $m \times t$ matrix Y. The calling program must

- (a) if irevcm = 1, evaluate AX and store the result in y or if irevcm = 2, evaluate A^HY and store the result in x, where A^H is the complex conjugate transpose;
- (b) call nag_linsys_complex_gen_norm_rcomm (f04zdc) once again, with all the arguments unchanged.

On intermediate re-entry: irevcm must be unchanged.

On final exit: irevcm = 0.

2: **m** – Integer

On entry: the number of rows of the matrix A.

Constraint: $\mathbf{m} \ge 0$.

3: **n** – Integer

On initial entry: n, the number of columns of the matrix A. Constraint: $\mathbf{n} \ge 0$.

4: $\mathbf{x}[dim] - \text{Complex}$

Note: the dimension, dim, of the array **x** must be at least $\mathbf{pdx} \times \mathbf{t}$. The (i, j)th element of the matrix X is stored in $\mathbf{x}[(j-1) \times \mathbf{pdx} + i - 1]$. On initial entry: need not be set. On intermediate exit: if **irevcm** = 1, contains the current matrix X. On intermediate re-entry: if **irevcm** = 2, must contain $A^{H}Y$. On final exit: the array is undefined.

5: pdx – Integer
 On entry: the stride separating matrix row elements in the array x.

Constraint: $pdx \ge n$.

6: $\mathbf{y}[dim]$ - Complex Input/Output Note: the dimension, dim, of the array y must be at least $\mathbf{pdy} \times \mathbf{t}$.

The (i, j)th element of the matrix Y is stored in $\mathbf{y}[(j-1) \times \mathbf{pdy} + i - 1]$. On initial entry: need not be set.

On intermediate exit: if irevcm = 2, contains the current matrix Y.

On intermediate re-entry: if irevcm = 1, must contain AX.

On final exit: the array is undefined.

Constraint: $pdy \ge m$.

On initial entry: need not be set.

On intermediate re-entry: must not be changed.

On final exit: an estimate (a lower bound) for $||A||_1$.

estnrm - double *

pdy – Integer

7:

8:

9:

f04zdc

Input

Input/Output

Input

Input

Input/Output

On entry: the number of columns t of the matrices X and Y. This is an argument that can be used to control the accuracy and reliability of the estimate and corresponds roughly to the number of columns of A that are visited during each iteration of the algorithm.

If $t \geq 2$ then a partly random starting matrix is used in the algorithm.

On entry: the stride separating matrix row elements in the array y.

Suggested value: $\mathbf{t} = 2$.

Constraint: $1 \leq t \leq m$.

10: seed – Integer

t – Integer

On entry: the seed used for random number generation.

If $\mathbf{t} = 1$, seed is not used.

Constraint: if $\mathbf{t} > 1$, seed ≥ 1 .

11:	$work[m \times t] - Complex$	Communication Array
12:	$\mathbf{rwork}[2 \times \mathbf{n}] - \text{double}$	Communication Array
13:	$iwork[2 \times n + 5 \times t + 20] - \text{Integer}$	Communication Array
	On initial entry: need not be set.	

On intermediate re-entry: must not be changed.

14: fail – NagError *

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument $\langle value \rangle$ had an illegal value.

NE_INT

On entry, **irevcm** = $\langle value \rangle$. Constraint: **irevcm** = 0, 1 or 2.

On entry, $\mathbf{m} = \langle value \rangle$. Constraint: $\mathbf{m} \ge 0$.

On entry, $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{n} \ge 0$.

On initial entry, **irevcm** = $\langle value \rangle$. Constraint: **irevcm** = 0.

f04zdc

NE_INT_2

On entry, $\mathbf{m} = \langle value \rangle$ and $\mathbf{t} = \langle value \rangle$. Constraint: $1 \leq \mathbf{t} \leq \mathbf{m}$.

On entry, $\mathbf{pdx} = \langle value \rangle$ and $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{pdx} \ge \mathbf{n}$.

On entry, $\mathbf{pdy} = \langle value \rangle$ and $\mathbf{m} = \langle value \rangle$. Constraint: $\mathbf{pdy} \geq \mathbf{m}$.

On entry, $\mathbf{t} = \langle value \rangle$ and $\mathbf{seed} = \langle value \rangle$. Constraint: if $\mathbf{t} > 1$, $\mathbf{seed} \ge 1$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7 Accuracy

In extensive tests on **random** matrices of size up to m = n = 450 the estimate **estnrm** has been found always to be within a factor two of $||A||_1$; often the estimate has many correct figures. However, matrices exist for which the estimate is smaller than $||A||_1$ by an arbitrary factor; such matrices are very unlikely to arise in practice. See Higham and Tisseur (2000) for further details.

8 Parallelism and Performance

Not applicable.

9 Further Comments

9.1 Timing

For most problems the time taken during calls to nag_linsys_complex_gen_norm_rcomm (f04zdc) will be negligible compared with the time spent evaluating matrix products between calls to nag_linsys_complex_gen_norm_rcomm (f04zdc).

The number of matrix products required depends on the matrix A. At most six products of the form Y = AX and five products of the form $X = A^{H}Y$ will be required. The number of iterations is independent of the choice of t.

9.2 Overflow

It is your responsibility to guard against potential overflows during evaluation of the matrix products. In particular, when estimating $||B^{-1}||_1$ using a triangular factorization of B, nag_linsys_complex_gen_norm_rcomm (f04zdc) should not be called if one of the factors is exactly singular – otherwise division by zero may occur in the substitutions.

9.3 Choice of t

The argument t controls the accuracy and reliability of the estimate. For t = 1, the algorithm behaves similarly to the LAPACK estimator xLACON. Increasing t typically improves the estimate, without increasing the number of iterations required.

For $t \ge 2$, random matrices are used in the algorithm, so for repeatable results the same value of **seed** should be used each time.

A value of t = 2 is recommended for new users.

9.4 Use in Conjunction with NAG Library Routines

To estimate the 1-norm of the inverse of a matrix A, the following skeleton code can normally be used:

```
do {
f04zdc(&irevcm,m,n,x,pdx,y,pdy,&estnrm,t,seed,work,rwork,iwork,&fail);
    if (irevcm == 1){
        .. Code to compute y = A^(-1) x ..
    }
    else if (irevcm == 2){
        .. Code to compute x = A^(-H) y ..
    }
} (while irevcm != 0)
```

To compute $A^{-1}X$ or $A^{-H}Y$, solve the equation AY = X or $A^{H}X = Y$ storing the result in **y** or **x** respectively. The code will vary, depending on the type of the matrix A, and the NAG function used to factorize A.

The example program in Section 10 illustrates how nag_linsys_complex_gen_norm_rcomm (f04zdc) can be used in conjunction with NAG C Library function for *LU* factorization of complex matrices nag_zgetrf (f07arc)).

It is also straightforward to use nag_linsys_complex_gen_norm_rcomm (f04zdc) for Hermitian positive definite matrices, using nag_zge_copy (f16tfc), nag_zpotrf (f07frc) and nag_zpotrs (f07fsc) for factorization and solution.

For upper or lower triangular square matrices, no factorization function is needed: $Y = A^{-1}X$ and $X = A^{-H}Y$ may be computed by calls to nag_ztrsv (fl6sjc) (or nag_ztbsv (fl6skc) if the matrix is banded, or nag_ztpsv (fl6slc) if the matrix is stored in packed form).

10 Example

This example estimates the condition number $||A||_1 ||A^{-1}||_1$ of the matrix A given by

	(0.7 + 0.1i)	-0.2 + 0.0i	1.0 + 0.0i	0.0+0.0i	0.0+0.0i	0.1 + 0.0i	
A =	0.3 + 0.0i	0.7+0.0i	0.0+0.0i	1.0 + 0.2i	0.9 + 0.0i	0.2 + 0.0i	
	$0.0 + 5.9i \\ 0.0 + 0.1i$	0.0+0.0i		0.7 + 0.0i	0.4 + 6.1i	1.1 + 0.4i	
	0.0 + 0.1i	0.0 + 0.1i	-0.7 + 0.0i	0.2 + 0.0i	0.1 + 0.0i	0.1 + 0.0i	·
	0.0 + 0.0i	4.0 + 0.0i	0.0+0.0i	1.0 + 0.0i	9.0 + 0.0i	0.0 + 0.1i	
	(4.5+6.7i)	0.1 + 0.4i	0.0 + 3.2i	1.2 + 0.0i	0.0+0.0i	7.8 + 0.2i /	

10.1 Program Text

```
/* nag_linsys_complex_gen_norm_rcomm (f04zdc) Example Program.
 * Copyright 2013, Numerical Algorithms Group.
* Mark 23, 2013.
*/
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naqf04.h>
#include <nagf07.h>
#include <nagf16.h>
int main(void)
{
  /* Scalars */
                exit_status = 0, irevcm = 0, seed = 354;
 Integer
                i, j, m, n, pda, pdx, pdy, t;
 Integer
                cond = 0.0, nrma = 0.0, nrminv = 0.0;
 double
  /* Arrays */
                *icomm = 0, *ipiv = 0;
 Integer
```

```
*a = 0, *work = 0, *x = 0, *y = 0;
  Complex
  double
                 *rwork = 0;
  /* Nag Types */
  Nag_OrderType order;
  NagError
             fail;
  Nag_TransType trans;
  INIT_FAIL(fail);
#define A(I, J) a[(J-1)*pda + I-1]
  order = Nag_ColMajor;
  /* Output preamble */
  printf("nag_linsys_complex_gen_norm_rcomm (f04zdc) ");
  printf("Example Program Results\n\n");
  fflush(stdout);
  /* Skip heading in data file */
  scanf("%*[^\n]");
  /* Read in the problem size and the value of the parameter t*/
  scanf("%ld %ld %ld %*[^\n] ", &m, &n, &t);
  pda = n;
  pdx = n;
  pdy = m;
  if (!(a = NAG_ALLOC(m*n, Complex)) ||
    !(x = NAG_ALLOC(n*t, Complex)) ||
      !(y = NAG_ALLOC(m*t, Complex)) ||
      !(work = NAG_ALLOC(m*t, Complex)) ||
      !(rwork = NAG_ALLOC(2*n, double)) ||
      !(ipiv = NAG_ALLOC(n, Integer)) ||
!(icomm = NAG_ALLOC(2*n+5*t+20, Integer))) {
    printf("Allocation failure\n");
    exit_status = -1;
    goto END;
  }
  /* Read in the matrix a from data file */
  for (i = 1; i <= m; i++)
    for (j = 1; j <= n; j++)
scanf(" ( %lf , %lf ) ", &A(i, j).re, &A(i, j).im);</pre>
  scanf("%*[^\n]");
  /* Compute the 1-norm of A */
  nag_zge_norm(order, Nag_OneNorm, m, n, a, pda, &nrma, &fail);
  if (fail.code != NE_NOERROR)
    {
      printf("Error from nag_dge_norm\n%s\n",fail.message);
      exit_status = 1;
      goto END;
  printf("Estimated norm of A is: %7.2f\n\n",nrma);
   * Estimate the norm of A^{(-1)} witchut explicitly forming A^{(-1)}
   */
  /* Compute and LU factorization of A using nag_zgetrf (f07arc) */
  nag_zgetrf(order, m, n, a, pda, ipiv, &fail);
  if (fail.code != NE_NOERROR)
    {
      printf("Error from nag_zgetrf\n%s\n",fail.message);
      exit_status = 2;
      goto END;
    }
```

```
/* Estimate the norm of A^(-1) using the LU factors of A
   * nag_linsys_complex_gen_norm_rcomm (f04zdc)
   * Estimate of the 1-norm of a complex matrix
   */
  do {
    nag_linsys_complex_gen_norm_rcomm(&irevcm, m, n, x, pdx, y, pdy,
                                       &nrminv, t, seed, work, rwork, icomm,
                                       &fail);
    if (irevcm == 1)
      {
        /* Compute y = inv(A)*x by solving Ay = x */
        trans = Nag_NoTrans;
        nag_zgetrs(order, trans, n, t, a, pda, ipiv, x, pdx, &fail);
        if (fail.code != NE_NOERROR)
          {
            printf("Error from nag_zgetrs\n%s\n",fail.message);
            exit_status = 3;
            goto END;
          3
        for (i = 0; i < n*t; i++) y[i] = x[i];</pre>
      }
    else if (irevcm == 2)
      {
        /* Compute x = herm(inv(A))*y by solving A^H x = y */
        trans = Nag_ConjTrans;
        nag_zgetrs(order, trans, n, t, a, pda, ipiv, y, pdy, &fail);
        if (fail.code != NE_NOERROR)
          {
            printf("Error from nag_zgetrs\n%s\n",fail.message);
            exit_status = 4;
            goto END;
          }
        for (i = 0; i < n*t; i++) x[i] = y[i];</pre>
      }
    } while (irevcm != 0);
  if (fail.code != NE_NOERROR)
    {
      printf("Error from nag_linsys_complex_gen_norm_rcomm (f04zdc) \n%s\n",
             fail.message);
      exit_status = 5;
      goto END;
    }
  printf("Etimated norm of inverse of A is: %7.2f\n\n",nrminv);
  /* Compute and print the estimated condition number */
  cond = nrma*nrminv;
  printf("Estimated condition number of A is: %7.2f\n",cond);
END:
  NAG_FREE(a);
  NAG_FREE(x);
  NAG_FREE(y);
  NAG_FREE (work);
  NAG_FREE(rwork);
  NAG_FREE(icomm);
  NAG_FREE(ipiv);
  return exit_status;
```

```
}
```

10.2 Program Data

nag_linsys_complex_gen_norm_rcomm (f04zdc) Example Program Data

6 6 2 :Values of m, n, t (0.7,0.1) (-0.2,0.0) (1.0,0.0) (0.0,0.0) (0.0,0.0) (0.1,0.0) (0.3,0.0) (0.7,0.0) (0.0,0.0) (1.0,0.2) (0.9,0.0) (0.2,0.0) (0.0,5.9) (0.0,0.0) (0.2,0.0) (0.7,0.0) (0.4,6.1) (1.1,0.4) (0.0,0.1) (0.0,0.1) (-0.7,0.0) (0.2,0.0) (0.1,0.0) (0.1,0.0) (0.0,0.0) (4.0,0.0) (0.0,0.0) (1.0,0.0) (9.0,0.0) (0.0,0.1) (4.5,6.7) (0.1,0.4) (0.0,3.2) (1.2,0.0) (0.0,0.0) (7.8,0.2) :End of matrix a

10.3 Program Results

nag_linsys_complex_gen_norm_rcomm (f04zdc) Example Program Results
Estimated norm of A is: 16.11
Etimated norm of inverse of A is: 24.02
Estimated condition number of A is: 387.08