
NAG Library Function Document

nag_kernel_density_gauss (g10bbc)

1 Purpose

nag_kernel_density_gauss (g10bbc) performs kernel density estimation using a Gaussian kernel.

2 Specification

#include <nag.h>
#include <nagg10.h>

void nag_kernel_density_gauss (Integer n, const double x[],
Nag_WindowType wtype, double *window, double *slo, double *shi,
Integer ns, double smooth[], double t[], Nag_Boolean fcall,
double rcomm[], NagError *fail)

3 Description

Given a sample of n observations, x1; x2; . . . ; xn, from a distribution with unknown density function,

f xð Þ, an estimate of the density function, f̂ xð Þ, may be required. The simplest form of density estimator
is the histogram. This may be defined by:

f̂ xð Þ ¼ 1
nhnj; aþ j� 1ð Þh < x < aþ jh; j ¼ 1; 2; . . . ; ns;

where nj is the number of observations falling in the interval aþ j� 1ð Þh to aþ jh, a is the lower
bound to the histogram, b ¼ nsh is the upper bound and ns is the total number of intervals. The value h
is known as the window width. To produce a smoother density estimate a kernel method can be used. A
kernel function, K tð Þ, satisfies the conditions:Z 1

�1
K tð Þ dt ¼ 1 and K tð Þ � 0:

The kernel density estimator is then defined as

f̂ xð Þ ¼ 1
nh

Xn
i¼1

K
x� xi
h

� �
:

The choice of K is usually not important but to ease the computational burden use can be made of the
Gaussian kernel defined as

K tð Þ ¼ 1ffiffiffiffiffiffi
2�
p e�t

2=2:

The smoothness of the estimator depends on the window width h. The larger the value of h the smoother
the density estimate. The value of h can be chosen by examining plots of the smoothed density for
different values of h or by using cross-validation methods (see Silverman (1990)).

Silverman (1982) and Silverman (1990) show how the Gaussian kernel density estimator can be
computed using a fast Fourier transform (FFT). In order to compute the kernel density estimate over the
range a to b the following steps are required.

(i) Discretize the data to give ns equally spaced points tl with weights �l (see Jones and Lotwick
(1984)).

(ii) Compute the FFT of the weights �l to give Yl.

(iii) Compute �l ¼ e�
1
2h

2s2
l Yl where sl ¼ 2�l= b� að Þ.

(iv) Find the inverse FFT of �l to give f̂ xð Þ.

g10 – Smoothing in Statistics g10bbc

Mark 24 g10bbc.1

To compute the kernel density estimate for further values of h only steps (iii) and (iv) need be repeated.

4 References

Jones M C and Lotwick H W (1984) Remark AS R50. A remark on algorithm AS 176. Kernel density
estimation using the Fast Fourier Transform Appl. Statist. 33 120–122

Silverman B W (1982) Algorithm AS 176. Kernel density estimation using the fast Fourier transform
Appl. Statist. 31 93–99

Silverman B W (1990) Density Estimation Chapman and Hall

5 Arguments

1: n – Integer Input

On entry: n, the number of observations in the sample.

If fcall ¼ Nag FALSE, n must be unchanged since the last call to nag_kernel_density_gauss
(g10bbc).

Constraint: n > 0.

2: x½n� – const double Input

On entry: xi, for i ¼ 1; 2; . . . ; n.

If fcall ¼ Nag FALSE, x must be unchanged since the last call to nag_kernel_density_gauss
(g10bbc).

3: wtype – Nag_WindowType Input

On entry: how the window width, h, is to be calculated:

wtype ¼ Nag WindowSupplied
h is supplied in window.

wtype ¼ Nag RuleOfThumb
h is to be calculated from the data, with

h ¼ m� 0:9�min q75 � q25; �ð Þ
n0:2

� �

where q75 � q25 is the inter-quartile range and � the standard deviation of the sample, x, and
m is a multipler supplied in window. The 25% and 75% quartiles, q25 and q75, are
calculated using nag_double_quantiles (g01amc). This is the "rule-of-thumb" suggested by
Silverman (1990).

Suggested value: wtype ¼ Nag RuleOfThumb and window ¼ 1:0

Constraint: wtype ¼ Nag WindowSupplied or Nag RuleOfThumb.

4: window – double * Input/Output

On entry: if wtype ¼ Nag WindowSupplied, then h, the window width. Otherwise, m, the
multiplier used in the calculation of h.

Suggested value: window ¼ 1:0 and wtype ¼ Nag RuleOfThumb

On exit: h, the window width actually used.

Constraint: window > 0:0.

5: slo – double * Input/Output

On entry: if slo < shi then a, the lower limit of the interval on which the estimate is calculated.
Otherwise, a and b, the lower and upper limits of the interval, are calculated as follows:

g10bbc NAG Library Manual

g10bbc.2 Mark 24

../G01/g01amc.pdf

a ¼ min
i

xif g � slo� h
b ¼ max

i
xif g þ slo� h

where h is the window width.

For most applications a should be at least three window widths below the lowest data point.

If fcall ¼ Nag FALSE, slo must be unchanged since the last call to nag_kernel_density_gauss
(g10bbc).

Suggested value: slo ¼ 3:0 and shi ¼ 0:0 which would cause a and b to be set 3 window widths
below and above the lowest and highest data points respectively.

On exit: a, the lower limit actually used.

6: shi – double * Input/Output

On entry: if slo < shi then b, the upper limit of the interval on which the estimate is calculated.
Otherwise a value for b is calculated from the data as stated in the description of slo and the value
supplied in shi is not used.

For most applications b should be at least three window widths above the highest data point.

If fcall ¼ Nag FALSE, shi must be unchanged since the last call to nag_kernel_density_gauss
(g10bbc).

On exit: b, the upper limit actually used.

7: ns – Integer Input

On entry: ns, the number of points at which the estimate is calculated.

If fcall ¼ Nag FALSE, ns must be unchanged since the last call to nag_kernel_density_gauss
(g10bbc).

Suggested value: ns ¼ 512

Constraints:

ns � 2;
The largest prime factor of ns must not exceed 19, and the total number of prime factors of
ns, counting repetitions, must not exceed 20.

8: smooth½ns� – double Output

On exit: f̂ tlð Þ, for l ¼ 1; 2; . . . ; ns, the ns values of the density estimate.

9: t½ns� – double Output

On exit: tl , for l ¼ 1; 2; . . . ; ns, the points at which the estimate is calculated.

10: fcall – Nag_Boolean Input

On entry: If fcall ¼ Nag TRUE then the values of Yl are to be calculated by this call to
nag_kernel_density_gauss (g10bbc), otherwise it is assumed that the values of Yl were calculated
by a previous call to this routine and the relevant information is stored in rcomm.

11: rcomm½nsþ 20� – double Communication Array

On entry: communication array, used to store information between calls to
nag_kernel_density_gauss (g10bbc).

If fcall ¼ Nag FALSE, rcomm must be unchanged since the last call to nag_kernel_density_gauss
(g10bbc).

g10 – Smoothing in Statistics g10bbc

Mark 24 g10bbc.3

On exit: the last ns elements of rcomm contain the fast Fourier transform of the weights of the
discretized data, that is rcomm½l þ 19� ¼ Yl , for l ¼ 1; 2; . . . ; ns.

12: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_ILLEGAL_COMM

rcomm has been corrupted between calls.

NE_INT

On entry, n ¼ valueh i.
Constraint: n > 0.

On entry, ns ¼ valueh i.
Constraint: ns � 2.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_PREV_CALL

On entry, n ¼ valueh i.
On entry at previous call, n ¼ valueh i.
Constraint: if fcall ¼ Nag FALSE, n must be unchanged since previous call.

On entry, ns ¼ valueh i.
On entry at previous call, ns ¼ valueh i.
Constraint: if fcall ¼ Nag FALSE, ns must be unchanged since previous call.

On entry, shi ¼ valueh i.
On exit from previous call, shi ¼ valueh i.
Constraint: if fcall ¼ Nag FALSE, shi must be unchanged since previous call.

On entry, slo ¼ valueh i.
On exit from previous call, slo ¼ valueh i.
Constraint: if fcall ¼ Nag FALSE, slo must be unchanged since previous call.

NE_PRIME_FACTOR

On entry, ns ¼ valueh i.
Constraint: Largest prime factor of ns must not exceed 19.

On entry, ns ¼ valueh i.
Constraint: Total number of prime factors of ns must not exceed 20.

NE_REAL

On entry, window ¼ valueh i.
Constraint: window > 0:0.

g10bbc NAG Library Manual

g10bbc.4 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

NW_POTENTIAL_PROBLEM

On entry, slo ¼ valueh i and shi ¼ valueh i.
On entry, min xð Þ ¼ valueh i and max xð Þ ¼ valueh i.
Expected values of at least valueh i and valueh i for slo and shi.
All output values have been returned.

7 Accuracy

See Jones and Lotwick (1984) for a discussion of the accuracy of this method.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time for computing the weights of the discretized data is of order n, while the time for computing
the FFT is of order nslog nsð Þ, as is the time for computing the inverse of the FFT.

10 Example

Data is read from a file and the density estimated. The first 20 values are then printed.

10.1 Program Text

/* nag_kernel_density_gauss (g10bbc) Example Program.
*
* Copyright 2013 Numerical Algorithms Group.
*
* Mark 24, 2013.
*/

/* Pre-processor includes */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>
#include <nagg10.h>

int main(void)
{

/* Integer scalar and array declarations */
Integer n, ns, i;
Integer exit_status = 0;

/* Nag Types */
NagError fail;
Nag_Boolean fcall;
Nag_WindowType wtype;

/* Double scalar and array declarations */
double shi, slo, window;
double *rcomm = 0, *smooth = 0, *t = 0, *x = 0;

/* Character scalar and array declarations */
char cwtype[40];

/* Initialise the error structure */
INIT_FAIL(fail);

printf("nag_kernel_density_gauss (g10bbc) Example Program Results\n\n");

/* Skip heading in data file */
scanf("%*[^\n] ");

g10 – Smoothing in Statistics g10bbc

Mark 24 g10bbc.5

/* Read in density estimation information */
scanf("%39s %lf %lf %lf %ld%*[^\n] ", cwtype, &window, &slo, &shi,

&ns);
wtype = (Nag_WindowType) nag_enum_name_to_value(cwtype);

/* Read in the size of the dataset */
scanf("%ld%*[^\n] ", &n);

if (!(smooth = NAG_ALLOC(ns, double)) ||
!(t = NAG_ALLOC(ns, double)) ||
!(rcomm = NAG_ALLOC(ns+20, double)) ||
!(x = NAG_ALLOC(n, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Only calling the routine once */
fcall = Nag_TRUE;

/* Read in data */
for (i = 0; i < n; i++)

{
scanf("%lf", &x[i]);

}
scanf("%*[^\n] ");

/* Call nag_kernel_density_gauss (g10bbc) to perform kernel
* density estimation
*/

nag_kernel_density_gauss(n,x,wtype,&window,&slo,&shi,ns,smooth,t,fcall,
rcomm,&fail);

if (fail.code != NE_NOERROR && fail.code != NW_POTENTIAL_PROBLEM)
{

printf("Error from nag_kernel_density_gauss (g10bbc).\n%s\n",
fail.message);

exit_status = -1;
goto END;

}

/* Display the summary of results */
printf("Window Width Used = %13.4e\n", window);
printf("Interval = (%13.4e,%13.4e)\n", slo, shi);
printf("\n");
printf("First %ld output values:\n", MIN(ns,20));
printf("\n");
printf(" Time Density\n");
printf(" Point Estimate\n");
printf(" ---------------------------\n");
for (i = 0; i < MIN(20,ns); i++)

printf(" %13.3e %13.3e\n", t[i], smooth[i]);

END:
NAG_FREE(smooth);
NAG_FREE(t);
NAG_FREE(rcomm);
NAG_FREE(x);

return exit_status;
}

10.2 Program Data

nag_kernel_density_gauss (g10bbc) Example Program Data
Nag_RuleOfThumb 1.0 3.0 0.0 512 :: wtype,window,slo,shi,ns
100 :: n
0.114 -0.232 -0.570 1.853 -0.994

-0.374 -1.028 0.509 0.881 -0.453
0.588 -0.625 -1.622 -0.567 0.421

g10bbc NAG Library Manual

g10bbc.6 Mark 24

-0.475 0.054 0.817 1.015 0.608
-1.353 -0.912 -1.136 1.067 0.121
-0.075 -0.745 1.217 -1.058 -0.894
1.026 -0.967 -1.065 0.513 0.969
0.582 -0.985 0.097 0.416 -0.514
0.898 -0.154 0.617 -0.436 -1.212

-1.571 0.210 -1.101 1.018 -1.702
-2.230 -0.648 -0.350 0.446 -2.667
0.094 -0.380 -2.852 -0.888 -1.481

-0.359 -0.554 1.531 0.052 -1.715
1.255 -0.540 0.362 -0.654 -0.272

-1.810 0.269 -1.918 0.001 1.240
-0.368 -0.647 -2.282 0.498 0.001
-3.059 -1.171 0.566 0.948 0.925
0.825 0.130 0.930 0.523 0.443

-0.649 0.554 -2.823 0.158 -1.180
0.610 0.877 0.791 -0.078 1.412 :: End of x

10.3 Program Results

nag_kernel_density_gauss (g10bbc) Example Program Results

Window Width Used = 3.7638e-01
Interval = (-4.1882e+00, 2.9822e+00)

First 20 output values:

Time Density
Point Estimate

-4.181e+00 3.828e-06
-4.167e+00 4.031e-06
-4.153e+00 4.423e-06
-4.139e+00 5.021e-06
-4.125e+00 5.846e-06
-4.111e+00 6.928e-06
-4.097e+00 8.305e-06
-4.083e+00 1.002e-05
-4.069e+00 1.215e-05
-4.055e+00 1.474e-05
-4.041e+00 1.788e-05
-4.027e+00 2.168e-05
-4.013e+00 2.624e-05
-3.999e+00 3.170e-05
-3.985e+00 3.821e-05
-3.971e+00 4.596e-05
-3.957e+00 5.514e-05
-3.943e+00 6.599e-05
-3.929e+00 7.877e-05
-3.915e+00 9.380e-05

g10 – Smoothing in Statistics g10bbc

Mark 24 g10bbc.7

This plot shows the estimated density function for the example data for several window widths.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

D
en

si
ty

 E
st

im
at

e

t

Example Program
Gaussian Kernel Density Estimation

window = 0.0941
window = 0.1882
window = 0.3764
window = 0.7528

g10bbc NAG Library Manual

g10bbc.8 (last) Mark 24

	g10bbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Jones and Lotwick (1984)
	Silverman (1982)
	Silverman (1990)

	5 Arguments
	n
	x
	wtype
	window
	slo
	shi
	ns
	smooth
	t
	fcall
	rcomm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_ILLEGAL_COMM
	NE_INT
	NE_INTERNAL_ERROR
	NE_PREV_CALL
	NE_PRIME_FACTOR
	NE_REAL
	NW_POTENTIAL_PROBLEM

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

