
NAG Library Chapter Introduction

h – Operations Research

Contents

1 Scope of the Chapter . 2

2 Background to the Problems . 2

3 Recommendations on Choice and Use of Available Functions 4

3.1 Integer Programming . 4

3.1.1 Control of Printed Output . 4
3.1.2 Memory Management . 5
3.1.3 Reading Optional Argument Values From a File. 5
3.1.4 Method of Setting Optional Arguments. 5

3.2 Transportation Problem . 6

3.3 Feature Selection – Best Subset Problem . 6

4 Functionality Index. 6

5 Auxiliary Functions Associated with Library Function Arguments 6

6 Functions Withdrawn or Scheduled for Withdrawal . 6

7 References. 6

h – Operations Research Introduction – h

Mark 24 h.1

1 Scope of the Chapter

This chapter provides functions to solve certain integer programming, transportation. Additionally ‘best
subset’ functions are included.

2 Background to the Problems

General linear programming (LP) problems (see Dantzig (1963)) are of the form:

find x ¼ x1; x2; . . . ; xnð ÞT to maximize F xð Þ ¼
Xn

j¼1

cjxj

subject to linear constraints which may have the forms:

Xn

j¼1

aijxj ¼ bi; i ¼ 1; 2; . . . ;m1 ðequalityÞ

Xn

j¼1

aijxj � bi; i ¼ m1 þ 1; . . . ;m2 ðinequalityÞ

Xn

j¼1

aijxj � bi; i ¼ m2 þ 1; . . . ;m ðinequalityÞ

xj � lj; j ¼ 1; 2; . . . ; n ðsimple boundÞ
xj � uj; j ¼ 1; 2; . . . ; n ðsimple boundÞ

This chapter deals with integer programming (IP) problems in which some or all the elements of the
solution vector x are further constrained to be integers. For general LP problems where x takes only real
(i.e., noninteger) values, refer to Chapter e04.

IP problems may or may not have a solution, which may or may not be unique.

Consider for example the following problem:

minimize 3x1 þ 2x2

subject to 4x1 þ 2x2 � 5
2x2 � 5

x1 � x2 � 2
and x1 � 0; x2 � 0:

The hatched area in Figure 1 is the feasible region, the region where all the constraints are satisfied, and
the points within it which have integer coordinates are circled. The lines of hatching are in fact contours
of decreasing values of the objective function 3x1 þ 2x2, and it is clear from Figure 1 that the optimum
IP solution is at the point 1; 1ð Þ. For this problem the solution is unique.

However, there are other possible situations.

(a) There may be more than one solution; e.g., if the objective function in the above problem were
changed to x1 þ x2, both 1; 1ð Þ and 2; 0ð Þ would be IP solutions.

(b) The feasible region may contain no points with integer coordinates, e.g., if an additional constraint

3x1 � 2

were added to the above problem.

(c) There may be no feasible region, e.g., if an additional constraint

x1 þ x2 � 1

were added to the above problem.

(d) The objective function may have no finite minimum within the feasible region; this means that the
feasible region is unbounded in the direction of decreasing values of the objective function, e.g., if
the constraints

Introduction – h NAG Library Manual

h.2 Mark 24

../E04/e04conts.pdf

4x1 þ 2x2 � 5; x1 � 0; x2 � 0;

were deleted from the above problem.

1 2 3 4

1

2

3

4 x 1 + 2 x 2 = 5

2 x 2 = 5

x 1 - x 2 = 2

⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗

x 1

x 2

d e c r e a s i n g v a l u e s o f 3 x 1
 + 2 x 2

Figure 1

Algorithms for IP problems are usually based on algorithms for general LP problems, together with some
procedure for constructing additional constraints which exclude noninteger solutions (see Beale (1977)).

The Branch and Bound (B&B) method is a well-known and widely used technique for solving IP
problems (see Beale (1977) or Mitra (1973)). It involves subdividing the optimum solution to the
original LP problem into two mutually exclusive sub-problems by branching an integer variable that
currently has a fractional optimal value. Each sub-problem can now be solved as an LP problem, using
the objective function of the original problem. The process of branching continues until a solution for
one of the sub-problems is feasible with respect to the integer problem. In order to prove the optimality
of this solution, the rest of the sub-problems in the B&B tree must also be solved. Naturally, if a better
integer feasible solution is found for any sub-problem, it should replace the one at hand.

A common method for specifying IP and LP problems in general is the use of the MPSX file format (see
IBM (1971)). A full description of this file format is provided in the function document for
nag_ip_mps_read (h02buc).

The efficiency in computations is enhanced by discarding inferior sub-problems. These are problems in
the B&B search tree whose LP solutions are lower than (in the case of maximization) the best integer
solution at hand.

A special type of linear programming problem is the transportation problem in which there are p� q
variables ykl which represent quantities of goods to be transported from each of p sources to each of q
destinations.

The problem is to minimize

Xp

k¼1

Xq

l¼1

cklykl

where ckl is the unit cost of transporting from source k to destination l. The constraints are:

h – Operations Research Introduction – h

Mark 24 h.3

../H/h02buc.pdf

Xq

l¼1

ykl ¼ Ak availabilitiesð Þ

Xp

k¼1

ykl ¼ Bl requirementsð Þ

ykl � 0:

Note that the availabilities must equal the requirements:

Xp

k¼1

Ak ¼
Xq

l¼1

Bl ¼
Xp

k¼1

Xq

l¼1

ykl

and if all the Ak and Bl are integers, then so are the optimal ykl.

The best n subsets problem assumes a scoring mechanism and a set of m features. The problem is one
of choosing the best n subsets of size p. It is addressed by two functions in this chapter. The first of
these uses reverse communication; the second direct communication.

3 Recommendations on Choice and Use of Available Functions

3.1 Integer Programming

The IP function in Chapter h provides a range of optional facilities: these offer the possibility of fine
control over many of the algorithmic arguments and the means of adjusting the level and nature of the
printed results. The MPSX reading function also offers some optional facilities.

Control of these optional facilities is exercised by a structure of type Nag_H02_Opt, the members of the
structure being optional input or output arguments to the function. After declaring the structure variable,
which is named options in this manual, you must initialize the structure by passing its address in a call
to the utility function nag_ip_init (h02xxc). Selected members of the structure may then be set to your
required values and the address of the structure passed to the NAG function. Any member which has not
been set by you will indicate to the function that the default value should be used for this argument. A
more detailed description of this process is given below in Section 3.1.4.

Examples of arguments which may be altered from their default value are options.feas_tol and
options.int_tol (these control the accuracy to which the constraints are satisfied in the B&B sub-
problems and the accuracy of the final objective function value, respectively), and options.max_iter
(which limits the number of iterations the algorithm will perform at each sub-problem). Certain members
of options supply further details concerning the final results, for example on exit from the IP solver the
member pointers options.state and options.lambda give the status of the constraints and the final values
of the Lagrange multipliers respectively. Another use of the options structure is to allow additional
information read in by the MPSX reader (such as the MPSX row and column names) to be
communicated to the IP solver for use in its printout.

3.1.1 Control of Printed Output

Results from the IP solution process are printed by default on the stdout (standard output) stream.
These include the results after each node of the B&B search tree and the final results at termination of
the search process. The amount of detail printed out may be increased or decreased by setting the
optional argument print_level, i.e., the structure member options.print_level. This member is an enum

type, Nag_PrintType, and an example value is Nag_Soln which when assigned to options.print_level
will cause the IP function to print only the final result; all intermediate results printout is suppressed.

If the results printout is not in the desired form then it may be switched off, by setting
options:print level ¼ Nag NoPrint, or alternatively you can supply your own function to printout or
make use of both the intermediate and final results. Such a function would be assigned to the pointer to
function member options.print_fun; the user-defined function would then be called in preference to the
NAG print function.

Introduction – h NAG Library Manual

h.4 Mark 24

../H/hconts.pdf
../H/h02xxc.pdf

In addition to the results, the values of the arguments to the optimization function are printed out when
the function is entered; the Boolean member options.list may be set to Nag_FALSE if this listing is not
required.

Printing may be output to a named file rather than to stdout by providing the name of the file in the
options character array member outfile. Error messages will still appear on stderr, if
fail:print ¼ Nag TRUE or the fail argument is supplied as NAG_DEFAULT (see Section 3.6 in the
Essential Introduction for details of error handling within the library). The level of output provided by
the MPSX reading function may also be controlled. In this case, control is provided by the optional
argument output_level.

3.1.2 Memory Management

The options structure contains a number of pointers for the input of data and the output of results. The
NAG functions will manage the allocation of memory to these pointers; when all calls to these functions
have been completed then a utility function nag_ip_free (h02xzc) can be called by your program to free
the NAG allocated memory which is no longer required.

If the calling function is part of a larger program then this utility function allows you to conserve
memory by freeing the NAG allocated memory before the options structure goes out of scope.
nag_ip_free (h02xzc) can free all NAG allocated memory in a single call, but it may also be used
selectively. In this case the memory assigned to certain pointers may be freed leaving the remaining
memory still available; pointers to this memory and the results it contains may then be passed to other
functions in your program without passing the structure and all its associated memory.

Although the NAG C Library functions will manage all memory allocation and deallocation, it may
occasionally be necessary for you to allocate memory to the options structure from within the calling
program before entering the optimization function.

An example of this is where you store information in a file from an optimization run and at a later date
wish to use that information to solve a similar optimization problem or the same one under slightly
changed conditions. The pointer options.state, for example, would need to be allocated memory by you
before the status of the constraints could be assigned from the values in the file.

If you assign memory to a pointer within the options structure then the deallocation of this memory must
also be performed by you; the utility function nag_ip_free (h02xzc) will only free memory allocated by
NAG C Library optimization functions. When user allocated memory is freed using the standard C
library function free() then the pointer should be set to NULL immediately afterwards; this will avoid
possible confusion in the NAG memory management system if a NAG function is subsequently entered.

3.1.3 Reading Optional Argument Values From a File

Optional argument values may be placed in a file by you and the function nag_ip_read (h02xyc) used to
read the file and assign the values to the options structure. This utility function permits optional
argument values to be supplied in any order and altered without recompilation of the program. The
values read are also checked before assignment to ensure they are in the correct range for the specified
option. Pointers within the options structure cannot be assigned to using nag_ip_read (h02xyc).

3.1.4 Method of Setting Optional Arguments

The method of using and setting the optional arguments is:

step 1 Declare a structure of type Nag_H02_Opt.

step 2 Initialize the structure using nag_ip_init (h02xxc).

step 3 Assign values to the structure.

step 4 Pass the address of the structure to the optimization function.

step 5 Call nag_ip_free (h02xzc) to free any memory allocated by the optimization function.

If after step 4, you wish to re-enter the optimization function, then step 3 can be returned to directly, i.e.,
step 5 need only be executed when all calls to the optimization function have been made.

h – Operations Research Introduction – h

Mark 24 h.5

../GENINT/essint.pdf
../GENINT/essint.pdf
../H/h02xzc.pdf
../H/h02xzc.pdf
../H/h02xzc.pdf
../H/h02xyc.pdf
../H/h02xyc.pdf
../H/h02xxc.pdf
../H/h02xzc.pdf

At step 3, values can be assigned directly and/or by means of the option file reading function
nag_ip_read (h02xyc). If values are only assigned from the options file then step 2 need not be
performed as nag_ip_read (h02xyc) will automatically call nag_ip_init (h02xxc) if the structure has not
been initialized.

3.2 Transportation Problem

nag_transport (h03abc) solves transportation problems. It uses integer arithmetic throughout and so
produces exact results. On a few machines, however, there is a risk of integer overflow without warning,
so the integer values in the data should be kept as small as possible by dividing out any common factors
from the coefficients of the constraint or objective functions.

3.3 Feature Selection – Best Subset Problem

nag_best_subset_given_size_revcomm (h05aac) selects the best n subsets of size p using a reverse
communication branch and bound algorithm.

nag_best_subset_given_size (h05abc) selects the best n subsets of size p using a direct communication
branch and bound algorithm.

4 Functionality Index

Convert data to arrays for use with nag_ip_bb (h02bbc) or nag_opt_lp (e04mfc)
..... nag_ip_mps_read (h02buc)

Feature selection,
best subset,

Given size,
direct communication .. nag_best_subset_given_size (h05abc)
reverse communication nag_best_subset_given_size_revcomm (h05aac)

Integer programming problem (dense):
free NAG allocated memory from option structure .. nag_ip_free (h02xzc)
initialize option structure .. nag_ip_init (h02xxc)
print solution with specified names ... nag_ip_mps_free (h02bvc)
read optional argument values ... nag_ip_read (h02xyc)
solve LP problem using branch and bound method ... nag_ip_bb (h02bbc)

Transportation problem ... nag_transport (h03abc)

5 Auxiliary Functions Associated with Library Function Arguments

None.

6 Functions Withdrawn or Scheduled for Withdrawal

None.

7 References

Ahuja R K, Magnanti T L and Orlin J B (1993) Network Flows: Theory, Algorithms and Applications
Prentice–Hall

Beale E M (1977) Integer programming The State of the Art in Numerical Analysis (ed D A H Jacobs)
Academic Press

Dantzig G B (1963) Linear Programming and Extensions Princeton University Press

IBM (1971) MPSX – Mathematical programming system Program Number 5734 XM4 IBM Trade
Corporation, New York

Introduction – h NAG Library Manual

h.6 Mark 24

../H/h02xyc.pdf
../H/h02xyc.pdf
../H/h02xxc.pdf
../H/h03abc.pdf
../H/h05aac.pdf
../H/h05abc.pdf
../H/h02bbc.pdf
../E04/e04mfc.pdf
../H/h02buc.pdf
../H/h05abc.pdf
../H/h05aac.pdf
../H/h02xzc.pdf
../H/h02xxc.pdf
../H/h02bvc.pdf
../H/h02xyc.pdf
../H/h02bbc.pdf
../H/h03abc.pdf

Mitra G (1973) Investigation of some branch and bound strategies for the solution of mixed integer
linear programs Math. Programming 4 155–170

Williams H P (1993) Model Building in Mathematical Programming (3rd Edition) Wiley

h – Operations Research Introduction – h

Mark 24 h.7 (last)

	h - Operations Research, Chapter Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	3 Recommendations on Choice and Use of Available Functions
	3.1 Integer Programming
	3.1.1 Control of Printed Output
	3.1.2 Memory Management
	3.1.3 Reading Optional Argument Values From a File
	3.1.4 Method of Setting Optional Arguments

	3.2 Transportation Problem
	3.3 Feature Selection - Best Subset Problem

	4 Functionality Index
	5 Auxiliary Functions Associated with Library Function Arguments
	6 Functions Withdrawn or Scheduled for Withdrawal
	7 References
	Ahuja et al. (1993)
	Beale (1977)
	Dantzig (1963)
	IBM (1971)
	Mitra (1973)
	Williams (1993)

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

