/* nag_real_sym_posdef_lin_solve (f04bdc) Example Program.
 *
 * Copyright 2014 Numerical Algorithms Group.
 *
 * Mark 8, 2004.
 */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf04.h>
#include <nagx04.h>

int main(void)
{
  /* Scalars */
  double        errbnd, rcond;
  Integer       exit_status, i, j, n, nrhs, pda, pdb;

  /* Arrays */
  char          nag_enum_arg[40];
  double        *a = 0, *b = 0;

  /* Nag Types */
  Nag_OrderType order;
  Nag_UploType  uplo;
  NagError      fail;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I - 1]
#define B(I, J) b[(J-1)*pdb + I - 1]
  order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J - 1]
#define B(I, J) b[(I-1)*pdb + J - 1]
  order = Nag_RowMajor;
#endif

  exit_status = 0;
  INIT_FAIL(fail);

  printf(
          "nag_real_sym_posdef_lin_solve (f04bdc) Example Program Results\n\n");

  /* Skip heading in data file */
  scanf("%*[^\n] ");
  scanf("%ld%ld%*[^\n] ", &n, &nrhs);
  if (n >= 0 && nrhs >= 0)
    {
      /* Allocate memory */
      if (!(a = NAG_ALLOC(n*n, double)) ||
          !(b = NAG_ALLOC(n*nrhs, double)))
        {
          printf("Allocation failure\n");
          exit_status = -1;
          goto END;
        }
#ifdef NAG_COLUMN_MAJOR
      pda = n;
      pdb = n;
#else
      pda = n;
      pdb = nrhs;
#endif
    }
  else
    {
      printf("%s\n", "n and/or nrhs too small");
      exit_status = 1;
      return exit_status;
    }
  scanf("%39s%*[^\n] ", nag_enum_arg);
  /* nag_enum_name_to_value (x04nac).
   * Converts NAG enum member name to value
   */
  uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);

  if (uplo == Nag_Upper)
    {
      /* Read the upper triangular part of A from data file */
      for (i = 1; i <= n; ++i)
        {
          for (j = i; j <= n; ++j)
            {
              scanf("%lf", &A(i, j));
            }
        }
      scanf("%*[^\n] ");
    }
  else
    {
      /* Read the lower triangular part of A from data file */
      for (i = 1; i <= n; ++i)
        {
          for (j = 1; j <= i; ++j)
            {
              scanf("%lf", &A(i, j));
            }
        }
      scanf("%*[^\n] ");
    }

  /* Read B from data file */
  for (i = 1; i <= n; ++i)
    {
      for (j = 1; j <= nrhs; ++j)
        {
          scanf("%lf", &B(i, j));
        }
    }
  scanf("%*[^\n] ");

  /* Solve the equations AX = B for X */

  /* nag_real_sym_posdef_lin_solve (f04bdc).
   * Computes the solution and error-bound to a real symmetric
   * positive-definite system of linear equations
   */
  nag_real_sym_posdef_lin_solve(order, uplo, n, nrhs, a, pda, b, pdb,
                                &rcond, &errbnd, &fail);
  if (fail.code == NE_NOERROR)
    {
      /* Print solution, estimate of condition number and approximate */
      /* error bound */

      /* nag_gen_real_mat_print (x04cac).
       * Print real general matrix (easy-to-use)
       */
      fflush(stdout);
      nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
                             nrhs, b, pdb, "Solution", 0, &fail);
      if (fail.code != NE_NOERROR)
        {
          printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",
                  fail.message);
          exit_status = 1;
          goto END;
        }
      printf("\n");
      printf("%s\n%6s%10.1e\n", "Estimate of condition number", "",
              1.0/rcond);
      printf("\n\n");

      printf("%s\n%6s%10.1e\n\n",
              "Estimate of error bound for computed solutions", "", errbnd);
    }
  else if (fail.code == NE_RCOND)
    {
      /* Matrix A is numerically singular.  Print estimate of */
      /* reciprocal of condition number and solution */

      printf("\n%s\n%6s%10.1e\n\n\n",
              "Estimate of reciprocal of condition number", "", rcond);
      /* nag_gen_real_mat_print (x04cac), see above. */
      fflush(stdout);
      nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
                             nrhs, b, pdb, "Solution", 0, &fail);
      if (fail.code != NE_NOERROR)
        {
          printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",
                  fail.message);
          exit_status = 1;
          goto END;
        }
    }
  else if (fail.code == NE_POS_DEF)
    {
      /* The matrix A is not positive definite to working precision */
      printf("%s%3ld%s\n\n", "The leading minor of order ",
              fail.errnum, " is not positive definite");
    }
  else
    {
      printf(
              "Error from nag_real_sym_posdef_lin_solve (f04bdc).\n%s\n",
              fail.message);
      exit_status = 1;
      goto END;
    }

 END:
  NAG_FREE(a);
  NAG_FREE(b);

  return exit_status;
}