/* nag_herm_posdef_band_lin_solve (f04cfc) Example Program.
 *
 * Copyright 2014 Numerical Algorithms Group.
 *
 * Mark 8, 2004.
 */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf04.h>
#include <nagx04.h>

int main(void)
{
  double        errbnd, rcond;
  Integer       exit_status, i, j, kd, n, nrhs, pdab, pdb;

  /* Arrays */
  char          nag_enum_arg[20];
  char          *clabs = 0, *rlabs = 0;
  Complex       *ab = 0, *b = 0;

  /* Nag types */
  NagError      fail;
  Nag_OrderType order;
  Nag_UploType  uplo;

#ifdef NAG_COLUMN_MAJOR
#define AB_U(I, J) ab[(J-1)*pdab + kd + I - J]
#define AB_L(I, J) ab[(J-1)*pdab + I - J]
#define B(I, J)    b[(J-1)*pdb +  I - 1]
  order = Nag_ColMajor;
#else
#define AB_U(I, J) ab[(I-1)*pdab + J - I]
#define AB_L(I, J) ab[(I-1)*pdab + kd + J - I]
#define B(I, J)    b[(I-1)*pdb +  J - 1]
  order = Nag_RowMajor;
#endif


  exit_status = 0;
  INIT_FAIL(fail);

  printf("nag_herm_posdef_band_lin_solve (f04cfc)"
          " Example Program Results\n\n");

  /* Skip heading in data file */
  scanf("%*[^\n] ");
  scanf("%ld%ld%ld%*[^\n] ", &n, &kd, &nrhs);
  if (n > 0 && kd > 0 && nrhs > 0)
    {
      /* Allocate memory */
      if (!(clabs = NAG_ALLOC(2, char)) ||
          !(rlabs = NAG_ALLOC(2, char)) ||
          !(ab = NAG_ALLOC((kd+1)*n, Complex)) ||
          !(b = NAG_ALLOC(n*nrhs, Complex)))
        {
          printf("Allocation failure\n");
          exit_status = -1;
          goto END;
        }
      pdab = kd+1;
#ifdef NAG_COLUMN_MAJOR
      pdb = n;
#else
      pdb = nrhs;
#endif
    }
  else
    {
      printf("%s\n", "One or more of n, kd and nrhs is too small");
      exit_status = 1;
      return exit_status;
    }

  /* Read uplo storage name for the matrix A and convert to value. */
  scanf("%19s%*[^\n] ", nag_enum_arg);

  /* nag_enum_name_to_value (x04nac).
   * Converts NAG enum member name to value
   */
  uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);

  /* Read the upper or lower triangular part of the band matrix A */
  /* from data file */

  if (uplo == Nag_Upper)
    {
      for (i = 1; i <= n; ++i)
        {
          for (j = i; j <= MIN(n, i + kd); ++j)
            {
              scanf(" ( %lf , %lf )", &AB_U(i, j).re, &AB_U(i, j).im);
            }
          scanf("%*[^\n] ");
        }
    }
  else
    {
      for (i = 1; i <= n; ++i)
        {
          for (j = MAX(1, i - kd); j <= i; ++j)
            {
              scanf(" ( %lf , %lf )", &AB_L(i, j).re, &AB_L(i, j).im);
            }
          scanf("%*[^\n] ");
        }
    }

  /* Read B from data file */
  for (i = 1; i <= n; ++i)
    {
      for (j = 1; j <= nrhs; ++j)
        {
          scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
        }
    }
  scanf("%*[^\n] ");

  /* Solve the equations AX = B for X */
  /* nag_herm_posdef_band_lin_solve (f04cfc).
   * Computes the solution and error-bound to a complex
   * Hermitian positive-definite banded system of linear
   * equations
   */
  nag_herm_posdef_band_lin_solve(order, uplo, n, kd, nrhs, ab, pdab, b,
                                 pdb, &rcond, &errbnd, &fail);

  if (fail.code == NE_NOERROR)
    {
      /* Print solution, estimate of condition number and approximate *
       * error bound */
      /* nag_gen_complx_mat_print_comp (x04dbc).
       * Print complex general matrix (comprehensive)
       */
      fflush(stdout);
      nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix,
                                    Nag_NonUnitDiag, n, nrhs, b, pdb,
                                    Nag_BracketForm, "%7.4f",
                                    "Solution", Nag_IntegerLabels, 0,
                                    Nag_IntegerLabels, 0, 80, 0, 0,
                                    &fail);
      if (fail.code != NE_NOERROR)
        {
          printf(
                  "Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
                  fail.message);
          exit_status = 1;
          goto END;
        }

      printf("\n%s\n%4s%10.1e\n\n", "Estimate of condition number", "",
              1.0/rcond);
      printf("\n%s\n%4s%10.1e\n\n",
              "Estimate of error bound for computed solutions", "",
              errbnd);
    }
  else if (fail.code == NE_RCOND)
    {
      /* Matrix A is numerically singular.  Print estimate of */
      /* reciprocal of condition number and solution. */

      printf("\n");
      printf("%s\n%4s%10.1e\n\n\n",
              "Estimate of reciprocal of condition number", "", rcond);
      /* nag_gen_complx_mat_print_comp (x04dbc), see above. */
      fflush(stdout);
      nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix,
                                    Nag_NonUnitDiag, n, nrhs, b, pdb,
                                    Nag_BracketForm, "%7.4f",
                                    "Solution", Nag_IntegerLabels, 0,
                                    Nag_IntegerLabels, 0, 80, 0, 0,
                                    &fail);
      if (fail.code != NE_NOERROR)
        {
          printf(
                  "Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
                  fail.message);
          exit_status = 1;
          goto END;
        }
    }
  else if (fail.code == NE_POS_DEF)
    {
      /* The matrix A is not positive definite to working precision */
      printf("%s%3ld%s\n\n", "The leading minor of order ",
              fail.errnum, " is not positive definite");
    }
  else
    {
      printf(
              "Error from nag_herm_posdef_band_lin_solve (f04cfc).\n%s\n",
              fail.message);
      exit_status = 1;
      goto END;
    }

 END:
  NAG_FREE(clabs);
  NAG_FREE(rlabs);
  NAG_FREE(ab);
  NAG_FREE(b);

  return exit_status;
}
#undef AB
#undef B