/* nag_ztrsm (f16zjc) Example Program.
 *
 * Copyright 2014 Numerical Algorithms Group.
 *
 * Mark 8, 2005.
 */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{

  /* Scalars */
  Complex       alpha;
  Integer       exit_status, i, j, m, n, pda, pdb;

  /* Arrays */
  Complex       *a = 0, *b = 0;
  char          nag_enum_arg[40];

  /* Nag Types */
  NagError      fail;
  Nag_SideType  side;
  Nag_DiagType  diag;
  Nag_OrderType order;
  Nag_TransType trans;
  Nag_UploType  uplo;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I - 1]
#define B(I, J) b[(J-1)*pdb + I - 1]
  order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J - 1]
#define B(I, J) b[(I-1)*pdb + J - 1]
  order = Nag_RowMajor;
#endif

  exit_status = 0;
  INIT_FAIL(fail);

  printf("nag_ztrsm (f16zjc) Example Program Results\n\n");

  /* Skip heading in data file */
  scanf("%*[^\n] ");
  /* Read the problem dimensions */
  scanf("%ld%ld%*[^\n] ", &m, &n);

#ifdef NAG_COLUMN_MAJOR
  pdb = m;
#else
  pdb = n;
#endif

  /* Read side */
  scanf("%39s%*[^\n] ", nag_enum_arg);
  /* nag_enum_name_to_value (x04nac).
   * Converts NAG enum member name to value
   */
  side = (Nag_SideType) nag_enum_name_to_value(nag_enum_arg);
  /* Read uplo */
  scanf("%39s%*[^\n] ", nag_enum_arg);
  /* nag_enum_name_to_value (x04nac), see above. */
  uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);
  /* Read trans */
  scanf("%39s%*[^\n] ", nag_enum_arg);
  /* nag_enum_name_to_value (x04nac), see above. */
  trans = (Nag_TransType) nag_enum_name_to_value(nag_enum_arg);
  /* Read diag */
  scanf("%39s%*[^\n] ", nag_enum_arg);
  /* nag_enum_name_to_value (x04nac), see above. */
  diag = (Nag_DiagType) nag_enum_name_to_value(nag_enum_arg);
  /* Read scalar parameters */
  scanf(" ( %lf , %lf )%*[^\n] ", &alpha.re, &alpha.im);

  if (side == Nag_LeftSide)
    {
      pda = m;
    }
  else
    {
      pda = n;
    }

  if (n > 0)
    {
      /* Allocate memory */
      if (!(a = NAG_ALLOC(pda*pda, Complex)) ||
          !(b = NAG_ALLOC(n*m, Complex)))
        {
          printf("Allocation failure\n");
          exit_status = -1;
          goto END;
        }
    }
  else
    {
      printf("Invalid n\n");
      exit_status = 1;
      return exit_status;
    }

  /* Read A from data file */
  if (uplo == Nag_Upper)
    {
      for (i = 1; i <= pda; ++i)
        {
          for (j = i; j <= pda; ++j)
            scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
        }
      scanf("%*[^\n] ");
    }
  else
    {
      for (i = 1; i <= pda; ++i)
        {
          for (j = 1; j <= i; ++j)
            scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
        }
      scanf("%*[^\n] ");
    }

  /* Input matrix B */
  for (i = 1; i <= m; ++i)
    {
      for (j = 1; j <= n; ++j)
        scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
    }

  /* nag_ztrsm (f16zjc).
   * Multiply matrix by inverse of Triangular complex matrix.
   *
   */
  nag_ztrsm(order, side, uplo, trans, diag, m, n, alpha, a, pda,
            b, pdb, &fail);
  if (fail.code != NE_NOERROR)
    {
      printf("Error from nag_ztrsm (f16zjc).\n%s\n", fail.message);
      exit_status = 1;
      goto END;
    }

  /* Print the updated matrix B */
  /* nag_gen_complx_mat_print_comp (x04dbc).
   * Print complex general matrix (comprehensive)
   */
  fflush(stdout);
  nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
                                m, n, b, pdb, Nag_BracketForm, "%5.1f",
                                "Updated Matrix B", Nag_IntegerLabels,
                                0, Nag_IntegerLabels, 0, 80, 0, 0,
                                &fail);
  if (fail.code != NE_NOERROR)
    {
      printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s"
              "\n", fail.message);
      exit_status = 1;
      goto END;
    }
 END:
  NAG_FREE(a);
  NAG_FREE(b);

  return exit_status;
}