nag_lookback_fls_greeks (s30bbc) (PDF version)
s Chapter Contents
s Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_lookback_fls_greeks (s30bbc)

 Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_lookback_fls_greeks (s30bbc) computes the price of a floating-strike lookback option together with its sensitivities (Greeks).

2  Specification

#include <nag.h>
#include <nags.h>
void  nag_lookback_fls_greeks (Nag_OrderType order, Nag_CallPut option, Integer m, Integer n, const double sm[], double s, const double t[], double sigma, double r, double q, double p[], double delta[], double gamma[], double vega[], double theta[], double rho[], double crho[], double vanna[], double charm[], double speed[], double colour[], double zomma[], double vomma[], NagError *fail)

3  Description

nag_lookback_fls_greeks (s30bbc) computes the price of a floating-strike lookback call or put option, together with the Greeks or sensitivities, which are the partial derivatives of the option price with respect to certain of the other input parameters. A call option of this type confers the right to buy the underlying asset at the lowest price, Smin, observed during the lifetime of the contract. A put option gives the holder the right to sell the underlying asset at the maximum price, Smax, observed during the lifetime of the contract. Thus, at expiry, the payoff for a call option is S-Smin, and for a put, Smax-S.
For a given minimum value the price of a floating-strike lookback call with underlying asset price, S, and time to expiry, T, is
Pcall = S e-qT Φa1 - Smin e-rT Φa2 + S e-rT   σ2 2b S Smin -2b / σ2 Φ -a1 + 2b σ T -e bT Φ -a1 ,  
where b=r-q0. The volatility, σ, risk-free interest rate, r, and annualised dividend yield, q, are constants.
The corresponding put price is
Pput = Smax e-rT Φ -a2 - S e-qT Φ -a1 + S e-rT   σ2 2b - S Smax -2b / σ2 Φ a1 - 2b σ T + ebT Φ a1 .  
In the above, Φ denotes the cumulative Normal distribution function,
Φx = - x ϕy dy  
where ϕ denotes the standard Normal probability density function
ϕy = 12π exp -y2/2  
and
a1 = ln S / Sm + b + σ2 / 2 T σT a2=a1-σT  
where Sm is taken to be the minimum price attained by the underlying asset, Smin, for a call and the maximum price, Smax, for a put.
The option price Pij=PX=Xi,T=Tj is computed for each minimum or maximum observed price in a set Smin i  or Smax i , i=1,2,,m, and for each expiry time in a set Tj, j=1,2,,n.

4  References

Goldman B M, Sosin H B and Gatto M A (1979) Path dependent options: buy at the low, sell at the high Journal of Finance 34 1111–1127

5  Arguments

1:     order Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2:     option Nag_CallPutInput
On entry: determines whether the option is a call or a put.
option=Nag_Call
A call; the holder has a right to buy.
option=Nag_Put
A put; the holder has a right to sell.
Constraint: option=Nag_Call or Nag_Put.
3:     m IntegerInput
On entry: the number of minimum or maximum prices to be used.
Constraint: m1.
4:     n IntegerInput
On entry: the number of times to expiry to be used.
Constraint: n1.
5:     sm[m] const doubleInput
On entry: sm[i-1] must contain Smin i , the ith minimum observed price of the underlying asset when option=Nag_Call, or Smax i , the maximum observed price when option=Nag_Put, for i=1,2,,m.
Constraints:
  • sm[i-1]z ​ and ​ sm[i-1] 1 / z , where z = nag_real_safe_small_number , the safe range parameter, for i=1,2,,m;
  • if option=Nag_Call, sm[i-1]S, for i=1,2,,m;
  • if option=Nag_Put, sm[i-1]S, for i=1,2,,m.
6:     s doubleInput
On entry: S, the price of the underlying asset.
Constraint: sz ​ and ​s1.0/z, where z=nag_real_safe_small_number, the safe range parameter.
7:     t[n] const doubleInput
On entry: t[i-1] must contain Ti, the ith time, in years, to expiry, for i=1,2,,n.
Constraint: t[i-1]z, where z = nag_real_safe_small_number , the safe range parameter, for i=1,2,,n.
8:     sigma doubleInput
On entry: σ, the volatility of the underlying asset. Note that a rate of 15% should be entered as 0.15.
Constraint: sigma>0.0.
9:     r doubleInput
On entry: the annual risk-free interest rate, r, continuously compounded. Note that a rate of 5% should be entered as 0.05.
Constraint: r0.0 and absr-q>10×eps×maxabsr,1, where eps=nag_machine_precision, the machine precision.
10:   q doubleInput
On entry: the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.
Constraint: q0.0 and absr-q>10×eps×maxabsr,1, where eps=nag_machine_precision, the machine precision.
11:   p[m×n] doubleOutput
Note: where Pi,j appears in this document, it refers to the array element
  • p[j-1×m+i-1] when order=Nag_ColMajor;
  • p[i-1×n+j-1] when order=Nag_RowMajor.
On exit: Pi,j contains Pij, the option price evaluated for the minimum or maximum observed price Smin i  or Smax i  at expiry tj for i=1,2,,m and j=1,2,,n.
12:   delta[m×n] doubleOutput
Note: the i,jth element of the matrix is stored in
  • delta[j-1×m+i-1] when order=Nag_ColMajor;
  • delta[i-1×n+j-1] when order=Nag_RowMajor.
On exit: the m×n array delta contains the sensitivity, PS, of the option price to change in the price of the underlying asset.
13:   gamma[m×n] doubleOutput
Note: the i,jth element of the matrix is stored in
  • gamma[j-1×m+i-1] when order=Nag_ColMajor;
  • gamma[i-1×n+j-1] when order=Nag_RowMajor.
On exit: the m×n array gamma contains the sensitivity, 2PS2, of delta to change in the price of the underlying asset.
14:   vega[m×n] doubleOutput
Note: where VEGAi,j appears in this document, it refers to the array element
  • vega[j-1×m+i-1] when order=Nag_ColMajor;
  • vega[i-1×n+j-1] when order=Nag_RowMajor.
On exit: VEGAi,j, contains the first-order Greek measuring the sensitivity of the option price Pij to change in the volatility of the underlying asset, i.e., Pij σ , for i=1,2,,m and j=1,2,,n.
15:   theta[m×n] doubleOutput
Note: where THETAi,j appears in this document, it refers to the array element
  • theta[j-1×m+i-1] when order=Nag_ColMajor;
  • theta[i-1×n+j-1] when order=Nag_RowMajor.
On exit: THETAi,j, contains the first-order Greek measuring the sensitivity of the option price Pij to change in time, i.e., - Pij T , for i=1,2,,m and j=1,2,,n, where b=r-q.
16:   rho[m×n] doubleOutput
Note: where RHOi,j appears in this document, it refers to the array element
  • rho[j-1×m+i-1] when order=Nag_ColMajor;
  • rho[i-1×n+j-1] when order=Nag_RowMajor.
On exit: RHOi,j, contains the first-order Greek measuring the sensitivity of the option price Pij to change in the annual risk-free interest rate, i.e., - Pij r , for i=1,2,,m and j=1,2,,n.
17:   crho[m×n] doubleOutput
Note: where CRHOi,j appears in this document, it refers to the array element
  • crho[j-1×m+i-1] when order=Nag_ColMajor;
  • crho[i-1×n+j-1] when order=Nag_RowMajor.
On exit: CRHOi,j, contains the first-order Greek measuring the sensitivity of the option price Pij to change in the annual cost of carry rate, i.e., - Pij b , for i=1,2,,m and j=1,2,,n, where b=r-q.
18:   vanna[m×n] doubleOutput
Note: where VANNAi,j appears in this document, it refers to the array element
  • vanna[j-1×m+i-1] when order=Nag_ColMajor;
  • vanna[i-1×n+j-1] when order=Nag_RowMajor.
On exit: VANNAi,j, contains the second-order Greek measuring the sensitivity of the first-order Greek Δij to change in the volatility of the asset price, i.e., - Δij T = - 2 Pij Sσ , for i=1,2,,m and j=1,2,,n.
19:   charm[m×n] doubleOutput
Note: where CHARMi,j appears in this document, it refers to the array element
  • charm[j-1×m+i-1] when order=Nag_ColMajor;
  • charm[i-1×n+j-1] when order=Nag_RowMajor.
On exit: CHARMi,j, contains the second-order Greek measuring the sensitivity of the first-order Greek Δij to change in the time, i.e., - Δij T = - 2 Pij ST , for i=1,2,,m and j=1,2,,n.
20:   speed[m×n] doubleOutput
Note: where SPEEDi,j appears in this document, it refers to the array element
  • speed[j-1×m+i-1] when order=Nag_ColMajor;
  • speed[i-1×n+j-1] when order=Nag_RowMajor.
On exit: SPEEDi,j, contains the third-order Greek measuring the sensitivity of the second-order Greek Γij to change in the price of the underlying asset, i.e., - Γij S = - 3 Pij S3 , for i=1,2,,m and j=1,2,,n.
21:   colour[m×n] doubleOutput
Note: where COLOURi,j appears in this document, it refers to the array element
  • colour[j-1×m+i-1] when order=Nag_ColMajor;
  • colour[i-1×n+j-1] when order=Nag_RowMajor.
On exit: COLOURi,j, contains the third-order Greek measuring the sensitivity of the second-order Greek Γij to change in the time, i.e., - Γij T = - 3 Pij ST , for i=1,2,,m and j=1,2,,n.
22:   zomma[m×n] doubleOutput
Note: where ZOMMAi,j appears in this document, it refers to the array element
  • zomma[j-1×m+i-1] when order=Nag_ColMajor;
  • zomma[i-1×n+j-1] when order=Nag_RowMajor.
On exit: ZOMMAi,j, contains the third-order Greek measuring the sensitivity of the second-order Greek Γij to change in the volatility of the underlying asset, i.e., - Γij σ = - 3 Pij S2σ , for i=1,2,,m and j=1,2,,n.
23:   vomma[m×n] doubleOutput
Note: where VOMMAi,j appears in this document, it refers to the array element
  • vomma[j-1×m+i-1] when order=Nag_ColMajor;
  • vomma[i-1×n+j-1] when order=Nag_RowMajor.
On exit: VOMMAi,j, contains the second-order Greek measuring the sensitivity of the first-order Greek Δij to change in the volatility of the underlying asset, i.e., - Δij σ = - 2 Pij σ2 , for i=1,2,,m and j=1,2,,n.
24:   fail NagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, m=value.
Constraint: m1.
On entry, n=value.
Constraint: n1.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.
NE_REAL
On entry, q=value.
Constraint: q0.0.
On entry, r=value.
Constraint: r0.0.
On entry, s=value.
Constraint: svalue and svalue.
On entry, sigma=value.
Constraint: sigma>0.0.
NE_REAL_2
On entry, r=value and q=value.
Constraint: r-q>10×eps×maxr,1, where eps is the machine precision.
NE_REAL_ARRAY
On entry, sm[value]=value.
Constraint: valuesm[i]value for all i.
On entry, t[value]=value.
Constraint: t[i]value for all i.
On entry with a call option, sm[value]=value.
Constraint: for call options, sm[i]value for all i.
On entry with a put option, sm[value]=value.
Constraint: for put options, sm[i]value for all i.

7  Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution function, Φ. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum relative error in the expansion is of the order of the machine precision (see nag_cumul_normal (s15abc) and nag_erfc (s15adc)). An accuracy close to machine precision can generally be expected.

8  Parallelism and Performance

nag_lookback_fls_greeks (s30bbc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9  Further Comments

None.

10  Example

This example computes the price of a floating-strike lookback put with a time to expiry of 6 months and a stock price of 87. The maximum price observed so far is 100. The risk-free interest rate is 6% per year and the volatility is 30% per year with an annual dividend return of 4%.

10.1  Program Text

Program Text (s30bbce.c)

10.2  Program Data

Program Data (s30bbce.d)

10.3  Program Results

Program Results (s30bbce.r)


nag_lookback_fls_greeks (s30bbc) (PDF version)
s Chapter Contents
s Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2015