
NAG Library Function Document

nag_1d_spline_fit (e02bec)

1 Purpose

nag_1d_spline_fit (e02bec) computes a cubic spline approximation to an arbitrary set of data points. The
knots of the spline are located automatically, but a single argument must be specified to control the
trade-off between closeness of fit and smoothness of fit.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_1d_spline_fit (Nag_Start start, Integer m, const double x[],
const double y[], const double weights[], double s, Integer nest,
double *fp, Nag_Comm *warmstartinf, Nag_Spline *spline, NagError *fail)

3 Description

nag_1d_spline_fit (e02bec) determines a smooth cubic spline approximation s xð Þ to the set of data points
xr ; yrð Þ, with weights wr , for r ¼ 1; 2; . . . ;m.

The spline is given in the B-spline representation

s xð Þ ¼
Xn�4

i¼1

ciNi xð Þ; ð1Þ

where Ni xð Þ denotes the normalized cubic B-spline defined upon the knots �i; �iþ1; . . . ; �iþ4.

The total number n of these knots and their values �1; . . . ; �n are chosen automatically by the function.
The knots �5; . . . ; �n�4 are the interior knots; they divide the approximation interval x1; xm½ � into n� 7
sub-intervals. The coefficients c1; c2; . . . ; cn�4 are then determined as the solution of the following
constrained minimization problem:

minimize

� ¼
Xn�4

i¼5

�2
i ð2Þ

subject to the constraint

� ¼
Xm

r¼1

�2
r � S; ð3Þ

where �i stands for the discontinuity jump in the third order derivative of s xð Þ at the interior knot �i,
�r denotes the weighted residual wr yr � s xrð Þð Þ,

and S is a non-negative number to be specified by you.

The quantity � can be seen as a measure of the (lack of) smoothness of s xð Þ, while closeness of fit is
measured through �. By means of the argument S, ‘the smoothing factor’, you can then control the
balance between these two (usually conflicting) properties. If S is too large, the spline will be too
smooth and signal will be lost (underfit); if S is too small, the spline will pick up too much noise
(overfit). In the extreme cases the function will return an interpolating spline � ¼ 0ð Þ if S is set to zero,
and the weighted least squares cubic polynomial � ¼ 0ð Þ if S is set very large. Experimenting with S
values between these two extremes should result in a good compromise. (See Section 9.2 for advice on
choice of S.)

e02 – Curve and Surface Fitting e02bec

Mark 25 e02bec.1

The method employed is outlined in Section 9.3 and fully described in Dierckx (1975), Dierckx (1981)
and Dierckx (1982). It involves an adaptive strategy for locating the knots of the cubic spline (depending
on the function underlying the data and on the value of S), and an iterative method for solving the
constrained minimization problem once the knots have been determined.

Values of the computed spline, or of its derivatives or definite integral, can subsequently be computed by
calling nag_1d_spline_evaluate (e02bbc), nag_1d_spline_deriv (e02bcc) or nag_1d_spline_intg (e02bdc),
as described in Section 9.4.

4 References

Dierckx P (1975) An algorithm for smoothing, differentiating and integration of experimental data using
spline functions J. Comput. Appl. Math. 1 165–184

Dierckx P (1981) An improved algorithm for curve fitting with spline functions Report TW54
Department of Computer Science, Katholieke Univerciteit Leuven

Dierckx P (1982) A fast algorithm for smoothing data on a rectangular grid while using spline functions
SIAM J. Numer. Anal. 19 1286–1304

Reinsch C H (1967) Smoothing by spline functions Numer. Math. 10 177–183

5 Arguments

1: start – Nag_Start Input

On entry: must be set to Nag Cold or Nag Warm.

start ¼ Nag Cold
The function will build up the knot set starting with no interior knots. No values need be
assigned to the argument spline!n, and memory will be allocated internally to
spline!lamda, spline!c, warmstartinf!nag w and warmstartinf!nag iw.

start ¼ Nag Warm
The function will restart the knot-placing strategy using the knots found in a previous call
of the function. In this case, all arguments except s must be unchanged from that previous
call. This warm start can save much time in searching for a satisfactory value of the
smoothing factor S.

Constraint: start ¼ Nag Cold or Nag Warm.

2: m – Integer Input

On entry: m, the number of data points.

Constraint: m � 4.

3: x½m� – const double Input

On entry: x½r� 1� holds the value xr of the independent variable (abscissa) x, for r ¼ 1; 2; . . . ;m.

Constraint: x1 < x2 < � � � < xm.

4: y½m� – const double Input

On entry: y½r� 1� holds the value yr of the dependent variable (ordinate) y, for r ¼ 1; 2; . . . ;m.

5: weights½m� – const double Input

On entry: the values wr of the weights, for r ¼ 1; 2; . . . ;m. For advice on the choice of weights,
see Section 2.1.2 in the e02 Chapter Introduction.

Constraint: weights½r � 1� > 0:0, for r ¼ 1; 2; . . . ;m.

e02bec NAG Library Manual

e02bec.2 Mark 25

6: s – double Input

On entry: the smoothing factor, S.

If S ¼ 0:0, the function returns an interpolating spline.

If S is smaller than machine precision, it is assumed equal to zero.

For advice on the choice of S, see Sections 3 and 9.2.

Constraint: s � 0:0.

7: nest – Integer Input

On entry: an overestimate for the number, n, of knots required.

Constraint: nest � 8. In most practical situations, nest ¼ m=2 is sufficient. nest never needs to be
larger than mþ 4, the number of knots needed for interpolation s ¼ 0:0ð Þ.

8: fp – double * Output

On exit: the sum of the squared weighted residuals, �, of the computed spline approximation. If
fp ¼ 0:0, this is an interpolating spline. fp should equal s within a relative tolerance of 0:001
unless n ¼ 8 when the spline has no interior knots and so is simply a cubic polynomial. For knots
to be inserted, s must be set to a value below the value of fp produced in this case.

9: warmstartinf – Nag_Comm *

Pointer to structure of type Nag_Comm with the following members:

nag_w – double * Input

On entry: if the warm start option is used, the values nag w½0�,. . .,nag w½spline!n� 1�
must be left unchanged from the previous call.

nag_iw – Integer * Input

On entry: if the warm start option is used, the values nag iw½0�,. . .,nag iw½spline!n� 1�
must be left unchanged from the previous call.

Note that when the information contained in the pointers nag w and nag iw is no longer of use, or
before a new call to nag_1d_spline_fit (e02bec) with the same warmstartinf, you should free this
storage using the NAG macro NAG_FREE. This storage will have been allocated only if this
function returns with fail:code ¼ NE NOERROR, NE_SPLINE_COEFF_CONV or NE_NUM_-
KNOTS_1D_GT.

10: spline – Nag_Spline *

Pointer to structure of type Nag_Spline with the following members:

n – Integer Input/Output

On entry: if the warm start option is used, the value of n must be left unchanged from the
previous call.

On exit: the total number, n, of knots of the computed spline.

lamda – double * Input/Output

On entry: a pointer to which, if start ¼ Nag Cold, memory of size nest is internally
allocated. If the warm start option is used, the values lamda½0�, lamda½1�, . . ., lamda½n� 1�
must be left unchanged from the previous call.

On exit: the knots of the spline, i.e., the positions of the interior knots lamda½4�, lamda½5�,
. . ., lamda½n� 5� a s w e l l a s t h e p o s i t i o n s o f t h e a d d i t i o n a l k n o t s
lamda½0� ¼ lamda½1� ¼ lamda½2� ¼ lamda½3� ¼ x½0� a n d
lamda½n� 4� ¼ lamda½n� 3� ¼ lamda½n� 2� ¼ lamda½n� 1� ¼ x½m� 1� needed for the
B-spline representation.

e02 – Curve and Surface Fitting e02bec

Mark 25 e02bec.3

c – double * Output

On exit: a pointer to which, if start ¼ Nag Cold, memory of size nest� 4 is internally
allocated. c½i� 1� holds the coefficient ci of the B-spline Ni xð Þ in the spline approximation
s xð Þ, for i ¼ 1; 2; . . . ; n� 4.

Note that when the information contained in the pointers lamda and c is no longer of use, or
before a new call to nag_1d_spline_fit (e02bec) with the same spline, you should free this storage
using the NAG macro NAG_FREE. This storage will have been allocated only if this function
returns with fail:code ¼ NE NOERROR, NE_SPLINE_COEFF_CONV, or NE_NUM_-
KNOTS_1D_GT.

11: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument start had an illegal value.

NE_ENUMTYPE_WARM

start ¼ Nag Warm at the first call of this function. start must be set to start ¼ Nag Cold at the
first call.

NE_INT_ARG_LT

On entry, m ¼ valueh i.
Constraint: m � 4.

On entry, nest ¼ valueh i.
Constraint: nest � 8.

NE_NOT_STRICTLY_INCREASING

The sequence x is not strictly increasing: x½ valueh i� ¼ valueh i, x½ valueh i� ¼ valueh i.

NE_NUM_KNOTS_1D_GT

The number of knots needed is greater than nest, nest ¼ valueh i. If nest is already large, say
nest > m=2, this may indicate that possibly s is too small: s ¼ valueh i.

NE_REAL_ARG_LT

On entry, s ¼ valueh i.
Constraint: s � 0:0.

NE_SF_D_K_CONS

On entry, nest ¼ valueh i, s ¼ valueh i, m ¼ valueh i.
Constraint: nest � mþ 4 when s ¼ 0:0.

NE_SPLINE_COEFF_CONV

The iterative process has failed to converge. Possibly s is too small: s ¼ valueh i.

NE_WEIGHTS_NOT_POSITIVE

On entry, the weights are not strictly positive: weights½ valueh i� ¼ valueh i.

e02bec NAG Library Manual

e02bec.4 Mark 25

If the function fails with an error exit of NE_SPLINE_COEFF_CONV or NE_NUM_KNOTS_1D_GT, a
spline approximation is returned, but it fails to satisfy the fitting criterion (see (2) and (3)) – perhaps by
only a small amount, however.

7 Accuracy

On successful exit, the approximation returned is such that its weighted sum of squared residuals � (as in
(3)) is equal to the smoothing factor S, up to a specified relative tolerance of 0:001 – except that if
n ¼ 8, � may be significantly less than S: in this case the computed spline is simply a weighted least
squares polynomial approximation of degree 3, i.e., a spline with no interior knots.

8 Parallelism and Performance

Not applicable.

9 Further Comments

9.1 Timing

The time taken for a call of nag_1d_spline_fit (e02bec) depends on the complexity of the shape of the
data, the value of the smoothing factor S, and the number of data points. If nag_1d_spline_fit (e02bec) is
to be called for different values of S, much time can be saved by setting start ¼ Nag Warm after the
first call.

9.2 Choice of S

If the weights have been correctly chosen (see Section 2.1.2 in the e02 Chapter Introduction), the
standard deviation of wryr would be the same for all r, equal to �, say. In this case, choosing the

smoothing factor S in the range �2 m�
ffiffiffiffiffiffiffi
2m
p� �

, as suggested by Reinsch (1967), is likely to give a good
start in the search for a satisfactory value. Otherwise, experimenting with different values of S will be
required from the start, taking account of the remarks in Section 3.

In that case, in view of computation time and memory requirements, it is recommended to start with a
very large value for S and so determine the least squares cubic polynomial; the value returned in fp, call
it �0, gives an upper bound for S. Then progressively decrease the value of S to obtain closer fits – say
by a factor of 10 in the beginning, i.e., S ¼ �0=10, S ¼ �0=100, and so on, and more carefully as the
approximation shows more details.

The number of knots of the spline returned, and their location, generally depend on the value of S and
on the behaviour of the function underlying the data. However, if nag_1d_spline_fit (e02bec) is called
with start ¼ Nag Warm, the knots returned may also depend on the smoothing factors of the previous
calls. Therefore if, after a number of trials with different values of S and start ¼ Nag Warm, a fit can
finally be accepted as satisfactory, it may be worthwhile to call nag_1d_spline_fit (e02bec) once more
with the selected value for S but now using start ¼ Nag Cold. Often, nag_1d_spline_fit (e02bec) then
returns an approximation with the same quality of fit but with fewer knots, which is therefore better if
data reduction is also important.

9.3 Outline of Method Used

If S ¼ 0, the requisite number of knots is known in advance, i.e., n ¼ mþ 4; the interior knots are
located immediately as �i ¼ xi�2, for i ¼ 5; 6; . . . ; n� 4. The corresponding least squares spline (see
nag_1d_spline_fit_knots (e02bac)) is then an interpolating spline and therefore a solution of the problem.

If S > 0, a suitable knot set is built up in stages (starting with no interior knots in the case of a cold start
but with the knot set found in a previous call if a warm start is chosen). At each stage, a spline is fitted
to the data by least squares (see nag_1d_spline_fit_knots (e02bac)) and �, the weighted sum of squares
of residuals, is computed. If � > S, new knots are added to the knot set to reduce � at the next stage. The
new knots are located in intervals where the fit is particularly poor, their number depending on the value
of S and on the progress made so far in reducing �. Sooner or later, we find that � � S and at that point
the knot set is accepted. The function then goes on to compute the (unique) spline which has this knot

e02 – Curve and Surface Fitting e02bec

Mark 25 e02bec.5

set and which satisfies the full fitting criterion specified by (2) and (3). The theoretical solution has
� ¼ S. The function computes the spline by an iterative scheme which is ended when � ¼ S within a
relative tolerance of 0:001. The main part of each iteration consists of a linear least squares computation
of special form, done in a similarly stable and efficient manner as in nag_1d_spline_fit_knots (e02bac).

An exception occurs when the function finds at the start that, even with no interior knots n ¼ 8ð Þ, the
least squares spline already has its weighted sum of squares of residuals � S. In this case, since this
spline (which is simply a cubic polynomial) also has an optimal value for the smoothness measure �,
namely zero, it is returned at once as the (trivial) solution. It will usually mean that S has been chosen
too large.

For further details of the algorithm and its use, see Dierckx (1981).

9.4 Evaluation of Computed Spline

The value of the computed spline at a given value x may be obtained in the double variable s by the call:

nag_1d_spline_evaluate(x, &s, &spline, &fail)

where spline is a structure of type Nag_Spline which is the output argument of nag_1d_spline_fit
(e02bec).

The values of the spline and its first three derivatives at a given value x may be obtained in the array s of
dimension at least 4 by the call:

nag_1d_spline_deriv(derivs, x, s, &spline, &fail)

w h e r e , i f derivs ¼ Nag LeftDerivs, l e f t - h a n d d e r i v a t i v e s a r e c o m p u t e d a n d , i f
derivs ¼ Nag RightDerivs, right-hand derivatives are calculated. The value of derivs is only relevant
if x is an interior knot (see nag_1d_spline_deriv (e02bcc)).

The value of the definite integral of the spline over the interval x½0� to x½m� 1� can be obtained in the
variable integral by the call:

nag_1d_spline_intg(&spline, &integral, &fail)

see nag_1d_spline_intg (e02bdc).

10 Example

This example reads in a set of data values, followed by a set of values of s. For each value of s it calls
nag_1d_spline_fit (e02bec) to compute a spline approximation, and prints the values of the knots and the
B-spline coefficients ci.

The program includes code to evaluate the computed splines, by calls to nag_1d_spline_evaluate
(e02bbc), at the points xr and at points mid-way between them. These values are not printed out,
however; instead the results are illustrated by plots of the computed splines, together with the data points
(indicated by �) and the positions of the knots (indicated by vertical lines): the effect of decreasing s can
be clearly seen.

10.1 Program Text

/* nag_1d_spline_fit (e02bec) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 2, 1991.
*
* Mark 6 revised, 2000.
* Mark 8 revised, 2004.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage02.h>

e02bec NAG Library Manual

e02bec.6 Mark 25

int main(void)
{

Integer exit_status = 0, j, m, nest, r;
NagError fail;
Nag_Comm warmstartinf;
Nag_Spline spline;
Nag_Start start;
double fp, s, *sp = 0, txr, *weights = 0, *x = 0, *y = 0;

INIT_FAIL(fail);

/* Initialise spline */
spline.lamda = 0;
spline.c = 0;

warmstartinf.nag_w = 0;
warmstartinf.nag_iw = 0;

printf("nag_1d_spline_fit (e02bec) Example Program Results\n");
#ifdef _WIN32

scanf_s("%*[^\n]"); /* Skip heading in data file */
#else

scanf("%*[^\n]"); /* Skip heading in data file */
#endif

/* Input the number of data points, followed by the data
* points x, the function values y and the weights w.
*/

#ifdef _WIN32
scanf_s("%"NAG_IFMT"", &m);

#else
scanf("%"NAG_IFMT"", &m);

#endif
nest = m + 4;
if (m >= 4)

{
if (!(weights = NAG_ALLOC(m, double)) ||

!(x = NAG_ALLOC(m, double)) ||
!(y = NAG_ALLOC(m, double)) ||
!(sp = NAG_ALLOC(2*m-1, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

else
{

printf("Invalid m.\n");
exit_status = 1;
return exit_status;

}
start = Nag_Cold;
for (r = 0; r < m; r++)

#ifdef _WIN32
scanf_s("%lf%lf%lf", &x[r], &y[r], &weights[r]);

#else
scanf("%lf%lf%lf", &x[r], &y[r], &weights[r]);

#endif
/* Read in successive values of s until end of data file. */

#ifdef _WIN32
while (scanf_s("%lf", &s) != EOF)

#else
while (scanf("%lf", &s) != EOF)

#endif
{

/* Determine the spline approximation. */
/* nag_1d_spline_fit (e02bec).
* Least-squares cubic spline curve fit, automatic knot
* placement, one variable
*/

nag_1d_spline_fit(start, m, x, y, weights, s, nest, &fp,

e02 – Curve and Surface Fitting e02bec

Mark 25 e02bec.7

&warmstartinf, &spline, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_1d_spline_fit (e02bec).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

/* Evaluate the spline at each x point and midway
* between x points, saving the results in sp.
*/

for (r = 0; r < m; r++)
{

/* nag_1d_spline_evaluate (e02bbc).
* Evaluation of fitted cubic spline, function only
*/

nag_1d_spline_evaluate(x[r], &sp[(r-1)*2+2], &spline, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_1d_spline_fit (e02bec).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
}

for (r = 0; r < m-1; r++)
{

txr = (x[r] + x[r+1]) / 2;
/* nag_1d_spline_evaluate (e02bbc), see above. */
nag_1d_spline_evaluate(txr, &sp[r*2+1], &spline, &fail);
if (fail.code != NE_NOERROR)

{
printf(

"Error from nag_1d_spline_evaluate (e02bbc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
}

/* Output the results. */
printf("\nCalling with smoothing factor s = %12.3e\n", s);
printf("\nNumber of distinct knots = %"NAG_IFMT"\n\n", spline.n-6);
printf("Distinct knots located at \n\n");
for (j = 3; j < spline.n-3; j++)

printf("%8.4f%s", spline.lamda[j],
(j-3)%6 == 5 || j == spline.n-4?"\n":" ");

printf("\n\n J B-spline coeff c\n\n");
for (j = 0; j < spline.n-4; ++j)

printf(" %3"NAG_IFMT" %13.4f\n", j+1, spline.c[j]);
printf("\nWeighted sum of squared residuals fp = %12.3e\n", fp);
if (fp == 0.0)

printf("The spline is an interpolating spline\n");
else if (spline.n == 8)

printf("The spline is the weighted least-squares cubic"
"polynomial\n");

start = Nag_Warm;
}

/* Free memory allocated in spline and warmstartinf */
END:
NAG_FREE(spline.lamda);
NAG_FREE(spline.c);
NAG_FREE(warmstartinf.nag_w);
NAG_FREE(warmstartinf.nag_iw);
NAG_FREE(weights);
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(sp);
return exit_status;

}

e02bec NAG Library Manual

e02bec.8 Mark 25

10.2 Program Data

nag_1d_spline_fit (e02bec) Example Program Data
15
0.0000E+00 -1.1000E+00 1.00
5.0000E-01 -3.7200E-01 2.00
1.0000E+00 4.3100E-01 1.50
1.5000E+00 1.6900E+00 1.00
2.0000E+00 2.1100E+00 3.00
2.5000E+00 3.1000E+00 1.00
3.0000E+00 4.2300E+00 0.50
4.0000E+00 4.3500E+00 1.00
4.5000E+00 4.8100E+00 2.00
5.0000E+00 4.6100E+00 2.50
5.5000E+00 4.7900E+00 1.00
6.0000E+00 5.2300E+00 3.00
7.0000E+00 6.3500E+00 1.00
7.5000E+00 7.1900E+00 2.00
8.0000E+00 7.9700E+00 1.00
1.0
0.5
0.1

10.3 Program Results

nag_1d_spline_fit (e02bec) Example Program Results

Calling with smoothing factor s = 1.000e+00

Number of distinct knots = 3

Distinct knots located at

0.0000 4.0000 8.0000

J B-spline coeff c

1 -1.3201
2 1.3542
3 5.5510
4 4.7031
5 8.2277

Weighted sum of squared residuals fp = 1.000e+00

Calling with smoothing factor s = 5.000e-01

Number of distinct knots = 7

Distinct knots located at

0.0000 1.0000 2.0000 4.0000 5.0000 6.0000
8.0000

J B-spline coeff c

1 -1.1072
2 -0.6571
3 0.4350
4 2.8061
5 4.6824
6 4.6416
7 5.1976
8 6.9008
9 7.9979

Weighted sum of squared residuals fp = 5.001e-01

e02 – Curve and Surface Fitting e02bec

Mark 25 e02bec.9

Calling with smoothing factor s = 1.000e-01

Number of distinct knots = 10

Distinct knots located at

0.0000 1.0000 1.5000 2.0000 3.0000 4.0000
4.5000 5.0000 6.0000 8.0000

J B-spline coeff c

1 -1.0900
2 -0.6422
3 0.0369
4 1.6353
5 2.1274
6 4.5526
7 4.2225
8 4.9108
9 4.4159

10 5.4794
11 6.8308
12 7.9935

Weighted sum of squared residuals fp = 1.000e-01

-2

 0

 2

 4

 6

 8

 0 1 2 3 4 5 6 7 8

B
-s

pl
in

e

x

Example Program
Calculation and Evaluation of B-splines Representation

Smoothing Factor S=1.0

B-spline
data points

e02bec NAG Library Manual

e02bec.10 Mark 25

-2

 0

 2

 4

 6

 8

 0 1 2 3 4 5 6 7 8

B
-s

pl
in

e

x

Smoothing Factor S=0.5

B-spline
data points

-2

 0

 2

 4

 6

 8

 0 1 2 3 4 5 6 7 8

B
-s

pl
in

e

x

Smoothing Factor S=0.1

B-spline
data points

e02 – Curve and Surface Fitting e02bec

Mark 25 e02bec.11 (last)

	e02bec
	1 Purpose
	2 Specification
	3 Description
	4 References
	Dierckx (1975)
	Dierckx (1981)
	Dierckx (1982)
	Reinsch (1967)

	5 Arguments
	start
	m
	x
	y
	weights
	s
	nest
	fp
	warmstartinf
	nag_w
	nag_iw

	spline
	n
	lamda
	c

	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_ENUMTYPE_WARM
	NE_INT_ARG_LT
	NE_NOT_STRICTLY_INCREASING
	NE_NUM_KNOTS_1D_GT
	NE_REAL_ARG_LT
	NE_SF_D_K_CONS
	NE_SPLINE_COEFF_CONV
	NE_WEIGHTS_NOT_POSITIVE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Timing
	9.2 Choice of S?
	9.3 Outline of Method Used
	9.4 Evaluation of Computed Spline

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

