# NAG Library Function Document nag_real_band_lin_solve (f04bbc) 

## 1 Purpose

nag_real_band_lin_solve (f04bbc) computes the solution to a real system of linear equations $A X=B$, where $\bar{A}$ is an $\bar{n}$ by $n$ band matrix, with $k_{l}$ subdiagonals and $k_{u}$ superdiagonals, and $X$ and $B$ are $n$ by $r$ matrices. An estimate of the condition number of $A$ and an error bound for the computed solution are also returned.

## 2 Specification

```
#include <nag.h>
#include <nagf04.h>
void nag_real_band_lin_solve (Nag_OrderType order, Integer n, Integer kl,
    Integer ku, Integer nrhs, double ab[], Integer pdab, Integer ipiv[],
    double b[], Integer pdb, double *rcond, double *errbnd, NagError *fail)
```


## 3 Description

The $L U$ decomposition with partial pivoting and row interchanges is used to factor $A$ as $A=P L U$, where $P$ is a permutation matrix, $L$ is the product of permutation matrices and unit lower triangular matrices with $k_{l}$ subdiagonals, and $U$ is upper triangular with $\left(k_{l}+k_{u}\right)$ superdiagonals. The factored form of $A$ is then used to solve the system of equations $A X=B$.

## 4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

## 5 Arguments

1: order - Nag_OrderType
Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., rowmajor ordering or column-major ordering. C language defined storage is specified by order $=$ Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

Constraint: order $=$ Nag_RowMajor or Nag_ColMajor.
2: $\quad \mathbf{n}$ - Integer
Input
On entry: the number of linear equations $n$, i.e., the order of the matrix $A$.
Constraint: $\mathbf{n} \geq 0$.
3: $\quad \mathbf{k l}$ - Integer
Input
On entry: the number of subdiagonals $k_{l}$, within the band of $A$.
Constraint: $\mathbf{k l} \geq 0$.

4: $\quad \mathbf{k u}$ - Integer
Input
On entry: the number of superdiagonals $k_{u}$, within the band of $A$.
Constraint: $\mathbf{k u} \geq 0$.
5: nrhs - Integer
Input
On entry: the number of right-hand sides $r$, i.e., the number of columns of the matrix $B$.
Constraint: nrhs $\geq 0$.
6: $\quad \mathbf{a b}[\operatorname{dim}]-$ double
Input/Output
Note: the dimension, dim, of the array ab must be at least $\max (1, \mathbf{p d a b} \times \mathbf{n})$.
On entry: the $n$ by $n$ matrix $A$.
This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements $A_{i j}$, for row $i=1, \ldots, n$ and column $j=\max \left(1, i-k_{l}\right), \ldots, \min \left(n, i+k_{u}\right)$, depends on the order argument as follows:

$$
\begin{aligned}
& \text { if } \mathbf{o r d e r}=\text { Nag_ColMajor, } A_{i j} \text { is stored as } \mathbf{a b}[(j-1) \times \mathbf{p d a b}+\mathbf{k l}+\mathbf{k u}+i-j] \\
& \text { if } \text { order }=\text { Nag_RowMajor, } A_{i j} \text { is stored as } \mathbf{a b}[(i-1) \times \mathbf{p d a b}+\mathbf{k} \mathbf{l}+j-i]
\end{aligned}
$$

See Section 9 for further details.
On exit: ab is overwritten by details of the factorization.
The elements, $u_{i j}$, of the upper triangular band factor $U$ with $k_{l}+k_{u}$ super-diagonals, and the multipliers, $l_{i j}$, used to form the lower triangular factor $L$ are stored. The elements $u_{i j}$, for $i=1, \ldots, n \quad$ and $\quad j=i, \ldots, \min \left(n, i+k_{l}+k_{u}\right), \quad$ and $\quad l_{i j}, \quad$ for $\quad i=1, \ldots, n \quad$ and $j=\max \left(1, i-k_{l}\right), \ldots, i$, are stored where $A_{i j}$ is stored on entry.

7: pdab - Integer
Input
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $A$ in the array $\mathbf{a b}$.

Constraint: $\mathbf{p d a b} \geq 2 \times \mathbf{k l}+\mathbf{k u}+1$.
8: $\quad \mathbf{i p i v}[\mathbf{n}]$ - Integer
Output
On exit: if fail.code $=$ NE_NOERROR, the pivot indices that define the permutation matrix $P$; at the $i$ th step row $i$ of the matrix was interchanged with row $\mathbf{i p i v}[i-1] . \operatorname{ipiv}[i-1]=i$ indicates a row interchange was not required.

9: $\quad \mathbf{b}[\operatorname{dim}]$ - double
Input/Output
Note: the dimension, dim, of the array $\mathbf{b}$ must be at least
$\max (1, \mathbf{p d b} \times \mathbf{n r h s})$ when order $=$ Nag_ColMajor; $\max (1, \mathbf{n} \times \mathbf{p d b})$ when order $=$ Nag_RowMajor.

The $(i, j)$ th element of the matrix $B$ is stored in

$$
\mathbf{b}[(j-1) \times \mathbf{p d b}+i-1] \text { when } \text { order }=\text { Nag_ColMajor; }
$$

$\mathbf{b}[(i-1) \times \mathbf{p d b}+j-1]$ when order $=$ Nag_RowMajor.
On entry: the $n$ by $r$ matrix of right-hand sides $B$.
On exit: if fail.code $=$ NE_NOERROR or NE_RCOND, the $n$ by $r$ solution matrix $X$.
pdb - Integer
Input
On entry: the stride separating row or column elements (depending on the value of order) in the array $\mathbf{b}$.

Constraints:
if order $=$ Nag_ColMajor, $\mathbf{p d b} \geq \max (1, \mathbf{n})$;
if order $=$ Nag_RowMajor, $\mathbf{p d b} \geq \max (1$, nrhs $)$.
11: rcond - double *
Output
On exit: if no constraints are violated, an estimate of the reciprocal of the condition number of the matrix $A$, computed as rcond $=1 /\left(\|A\|_{1}\left\|A^{-1}\right\|_{1}\right)$.

12: errbnd - double *
Output
On exit: if fail.code = NE_NOERROR or NE_RCOND, an estimate of the forward error bound for a computed solution $\overline{\hat{x}}$, such that $\|\hat{x}-\bar{x}\|_{1} /\|x\|_{1} \leq$ errbnd, where $\hat{x}$ is a column of the computed solution returned in the array $\mathbf{b}$ and $x$ is the corresponding column of the exact solution $X$. If rcond is less than machine precision, then errbnd is returned as unity.

13: fail - NagError *
Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6 Error Indicators and Warnings

## NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

## NE_BAD_PARAM

On entry, argument $\langle$ value $\rangle$ had an illegal value.

## NE_INT

On entry, $\mathbf{k I}=\langle$ value $\rangle$.
Constraint: $\mathbf{k l} \geq 0$.
On entry, ku $=\langle$ value $\rangle$.
Constraint: $\mathbf{k u} \geq 0$.
On entry, $\mathbf{n}=\langle$ value $\rangle$.
Constraint: $\mathbf{n} \geq 0$.
On entry, nrhs $=\langle$ value $\rangle$.
Constraint: nrhs $\geq 0$.
On entry, pdab $=\langle$ value $\rangle$.
Constraint: pdab $>0$.
On entry, $\mathbf{p d b}=\langle$ value $\rangle$.
Constraint: pdb $>0$.

## NE_INT_2

On entry, $\mathbf{p d b}=\langle$ value $\rangle$ and $\mathbf{n}=\langle$ value $\rangle$.
Constraint: $\mathbf{p d b} \geq \max (1, \mathbf{n})$.
On entry, $\mathbf{p d b}=\langle$ value $\rangle$ and nrhs $=\langle$ value $\rangle$.
Constraint: pdb $\geq \max (1$, nrhs $)$.

## NE_INT_3

On entry, pdab $=\langle$ value $\rangle, \mathbf{k} \mathbf{l}=\langle$ value $\rangle$ and $\mathbf{k u}=\langle$ value $\rangle$.
Constraint: $\mathbf{p d a b} \geq 2 \times \mathbf{k l}+\mathbf{k u}+1$.

## NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

## NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

## NE_RCOND

A solution has been computed, but rcond is less than machine precision so that the matrix $A$ is numerically singular.

## NE SINGULAR

Diagonal element $\langle v a l u e\rangle$ of the upper triangular factor is zero. The factorization has been completed, but the solution could not be computed.

## $7 \quad$ Accuracy

The computed solution for a single right-hand side, $\hat{x}$, satisfies an equation of the form

$$
(A+E) \hat{x}=b
$$

where

$$
\|E\|_{1}=O(\epsilon)\|A\|_{1}
$$

and $\epsilon$ is the machine precision. An approximate error bound for the computed solution is given by

$$
\frac{\|\hat{x}-x\|_{1}}{\|x\|_{1}} \leq \kappa(A) \frac{\|E\|_{1}}{\|A\|_{1}}
$$

where $\kappa(A)=\left\|A^{-1}\right\|_{1}\|A\|_{1}$, the condition number of $A$ with respect to the solution of the linear equations. nag_real_band_lin_solve (f04bbc) uses the approximation $\|E\|_{1}=\epsilon\|A\|_{1}$ to estimate errbnd. See Section 4.4 of Anderson et al. (1999) for further details.

## 8 Parallelism and Performance

nag_real_band_lin_solve (f04bbc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_real_band_lin_solve (f04bbc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

## 9 Further Comments

The Integer allocatable memory required is $\mathbf{n}$, and the double allocatable memory required is $3 \times \mathbf{n}$. In this case the factorization and the solution $X$ have been computed, but rcond and errbnd have not been computed.

The band storage scheme for the array ab stored in Nag_ColMajor is illustrated by the following example, when $n=5, k_{l}=2$, and $k_{u}=1$. Storage of the band matrix $A$ in the array $\mathbf{a b}$ :

| Band matrix $A$ |  |  |  |  | Band storage in array ab |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | order $=$ Nag_ColMajor |  |  |  |  | order $=$ Nag_RowMajor |  |  |  |  |  |
| $\begin{aligned} & a_{11} \\ & a_{21} \\ & a_{31} \end{aligned}$ | $a_{12}$ |  |  |  | * | * | * | $+$ | $+$ | * $\quad * \quad a_{11} \quad a_{12} \quad+\quad+$ |  |  |  |  |  |
|  | $a_{22}$ | $a_{23}$ |  |  | * | * | + | $+$ | $+$ |  | $a_{21}$ | $a_{22}$ | $a_{23}$ | $+$ |  |
|  | $a_{32}$ | $a_{33}$ | $a_{34}$ |  | * | $a_{12}$ | $a_{23}$ | $a_{34}$ | $a_{45}$ | $a_{31}$ | $a_{32}$ | $a_{33}$ | $a_{34}$ | + | * |
|  | $a_{42}$ | $a_{43}$ | $a_{44}$ | $a_{45}$ | $a_{1}$ | $a_{22}$ | $a_{33}$ | $a_{44}$ | $a_{55}$ | $a_{42}$ | $a_{43}$ | $a_{44}$ | $a_{45}$ | * | * |
|  |  | $a_{53}$ | $a_{54}$ | $a_{55}$ |  | $a_{32}$ | $a_{43}$ | $a_{54}$ | * | $a_{53}$ | $a_{54}$ | $a_{55}$ | * | * | * |
|  |  |  |  |  | $a_{21}$ $a_{31}$ |  | $a_{53}$ | * | * |  |  |  |  |  |  |

Array elements marked $*$ need not be set and are not referenced by the function. Array elements marked + need not be set, but are defined on exit from the function and contain the elements $u_{13}, u_{14}, u_{24}, u_{25}$ and $u_{35}$. In this example when order $=$ Nag_ColMajor the first referenced element of $\mathbf{a b}$ is $\mathbf{a b}[3]=a_{11}$; while for order $=$ Nag_RowMajor the first referenced element is $\mathbf{a b}[2]=a_{11}$.
In general, elements $a_{i j}$ are stored as follows:

$$
\begin{aligned}
& \text { if } \mathbf{o r d e r}=\text { Nag_ColMajor, } a_{i j} \text { are stored in } \mathbf{a b}[(j-1) \times \mathbf{p d a b}+\mathbf{k} \mathbf{l}+\mathbf{k u}+i-j] \\
& \text { if } \mathbf{o r d e r}=\text { Nag_RowMajor, } a_{i j} \text { are stored in } \mathbf{a b}[(i-1) \times \mathbf{p d a b}+\mathbf{k} \mathbf{l}+j-i]
\end{aligned}
$$

where $\max (1, i-\mathbf{k} \mathbf{l}) \leq j \leq \min (\mathbf{n}, i+\mathbf{k u})$.
The total number of floating-point operations required to solve the equations $A X=B$ depends upon the pivoting required, but if $n \gg k_{l}+k_{u}$ then it is approximately bounded by $O\left(n k_{l}\left(k_{l}+k_{u}\right)\right)$ for the factorization and $O\left(n\left(2 k_{l}+k_{u}\right) r\right)$ for the solution following the factorization. The condition number estimation typically requires between four and five solves and never more than eleven solves, following the factorization.
In practice the condition number estimator is very reliable, but it can underestimate the true condition number; see Section 15.3 of Higham (2002) for further details.

The complex analogue of nag_real_band_lin_solve (f04bbc) is nag_complex_band_lin_solve (f04cbc).

## 10 Example

This example solves the equations

$$
A X=B
$$

where $A$ is the band matrix

$$
A=\left(\begin{array}{rrrr}
-0.23 & 2.54 & -3.66 & 0 \\
-6.98 & 2.46 & -2.73 & -2.13 \\
0 & 2.56 & 2.46 & 4.07 \\
0 & 0 & -4.78 & -3.82
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
4.42 & -36.01 \\
27.13 & -31.67 \\
-6.14 & -1.16 \\
10.50 & -25.82
\end{array}\right)
$$

An estimate of the condition number of $A$ and an approximate error bound for the computed solutions are also printed.

### 10.1 Program Text

```
/* nag_real_band_lin_solve (f04bbc) Example Program.
    * Copyright 2014 Numerical Algorithms Group.
    *
    * Mark 8, 2004.
    */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf04.h>
#include <nagx04.h>
```

```
int main(void)
{
    /* Scalars */
    double errbnd, rcond;
    Integer exit_status, i, j, kl, ku, n, nrhs, pdab, pdb;
    /* Arrays */
    double *ab = 0, *b = 0;
    Integer *ipiv = 0;
    /* Nag Types */
    NagError fail;
    Nag_OrderType order;
#ifdef NAG_COLUMN_MAJOR
#define AB(I, J) ab[(J-1)*pdab + kl + ku + I - J]
#define B(I, J) b[(J-1)*pdb + I - 1]
    order = Nag_ColMajor;
#else
#define AB(I, J) ab[(I-1)*pdab + kl + J - I]
#define B(I, J) b[(I-1)*pdb + J - 1]
    order = Nag_RowMajor;
#endif
    exit_status = 0;
    INIT_FAIL(fail);
    printf(
        "nag_real_band_lin_solve (f04bbc) Example Program Results\n\n");
    /* Skip heading in data file */
#ifdef _WIN32
    scanf_s("%*[^\n] ");
#else
    scanf("%*[^\n] ");
#endif
#ifdef _WIN32
    scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n] ",
        &n, &kl, &ku, &nrhs);
#else
    scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n] ",
        &n, &kl, &ku, &nrhs);
#endif
    if ( }\textrm{n}>=0&&kl>=0 && ku >= 0 && nrhs >= 0
        {
            /* Allocate memory */
            if (!(ab = NAG_ALLOC((2*kl+ku+1)*n, double)) ||
                !(b = NAG_ALLOC(n*nrhs, double)) ||
                    !(ipiv = NAG_ALLOC(n, Integer)))
                {
                    printf("Allocation failure\n");
                        exit_status = -1;
                        goto END;
            }
            pdab = 2*kl+ku+1;
#ifdef NAG_COLUMN_MAJOR
            pdb = n;
#else
            pdb = nrhs;
#endif
            }
    else
        {
            printf("%s\n", "One or more of nmax, kl, ku or nrhs is"
                    " too small");
            exit_status = 1;
            return exit_status;
        }
```

```
    /* Read A and B from data file */
    for (i = 1; i <= n; ++i)
    {
        for (j = MAX(i - kl, 1); j <= MIN(i + ku, n); ++j)
            {
#ifdef _WIN32
                scanf_s("%lf", &AB(i, j));
#else
        scanf("%lf", &AB(i, j));
#endif
            }
        }
#ifdef _WIN32
    scanf_s("%*[^\n] ");
#else
    scanf("%*[^\n] ");
#endif
    for (i = 1; i <= n; ++i)
        for (j = 1; j <= nrhs; ++j)
        {
#ifdef _WIN32
                scanf_s("%lf", &B(i, j));
#else
        scanf("%lf", &B(i, j));
#endif
            }
        }
#ifdef _WIN32
    scanf_s("%*[^\n] ");
#else
    scanf("%*[^\n] ");
#endif
    /* Solve the equations AX = B for X */
    /* nag_real_band_lin_solve (f04bbc).
        * Computes the solution and error-bound to a real banded
        * system of linear equations
        */
    nag_real_band_lin_solve(order, n, kl, ku, nrhs, ab, pdab, ipiv, b,
                                    pdb, &rcond, &errbnd, &fail);
    if (fail.code == NE_NOERROR)
        {
                /* Print solution, estimate of condition number and approximate */
                /* error bound */
                /* nag_gen_real_mat_print (x04cac).
                    * Print real general matrix (easy-to-use)
                    */
                fflush(stdout);
                nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
                    n, nrhs, b, pdb, "Solution", O, &fail);
                if (fail.code != NE_NOERROR)
                    {
                printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",
                        fail.message);
                exit_status = 1;
                goto END;
            }
                printf("\n%s\n%6s%10.1e\n\n\n",
                    "Estimate of condition number", "", 1.0/rcond);
                printf("%s\n%6s%10.1e\n\n",
                            "Estimate of error bound for computed solutions", "",
                                    errbnd);
        }
    else if (fail.code == NE_RCOND)
            {
                /* Matrix A is numerically singular. Print estimate of */
```

```
        /* reciprocal of condition number and solution */
        printf("\n");
        printf("%s\n%6s%10.1e\n\n\n",
            "Estimate of reciprocal of condition number", "", rcond);
        /* nag_gen_real_mat_print (x04cac), see above. */
        fflush(stdout);
        nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
                    n, nrhs, b, pdb, "Solution", 0, &fail);
        if (fail.code != NE_NOERROR)
            printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",
                        fail.message);
                exit_status = 1;
                goto END;
            }
    }
    else if (fail.code == NE_SINGULAR)
    {
        /* The upper triangular matrix U is exactly singular. Print */
        /* details of factorization */
        printf("\n");
        /* nag__band_real_mat_print (x04cec).
            * Print real packed banded matrix (easy-to-use)
            */
        fflush(stdout);
        nag_band_real_mat_print(order, n, n, kl, kl+ku, ab, pdab,
                            "Details of factorization", 0, &fail);
        if (fail.code != NE_NOERROR)
            {
                printf("Error from nag_band_real_mat_print (x04cec).\n%s\n",
                        fail.message);
                exit_status = 1;
                goto END;
            }
        /* Print pivot indices */
        printf("\n%s\n", "Pivot indices");
        for (i = 1; i <= n; ++i)
            {
                printf("%11"NAG_IFMT"%s", ipiv[i - 1],
                        i%7 == 0 || i == n?"\n":" ");
            }
        printf("\n");
    }
else
    {
        printf("Error from nag_real_band_lin_solve (f04bbc).\n%s\n",
                        fail.message);
        exit_status = 1;
        goto END;
    }
END:
    NAG_FREE(ab);
    NAG_FREE(b);
    NAG_FREE(ipiv);
    return exit_status;
}
```


### 10.2 Program Data

nag_real_band_lin_solve (f04bbc) Example Program Data

| 4 | 1 | 2 | 2 | :Values of $N, K L, K U$ |
| :--- | :--- | :--- | :--- | :--- |$]$ and NRHS

```
    4.42 -36.01
27.13 -31.67
-6.14 -1.16
10.50-25.82 :End of matrix B
```


### 10.3 Program Results

```
nag_real_band_lin_solve (f04bbc) Example Program Results
    Solution
\begin{tabular}{rr}
1 & \multicolumn{1}{c}{2} \\
-2.0000 & 1.0000 \\
3.0000 & -4.0000 \\
1.0000 & 7.0000 \\
-4.0000 & -2.0000
\end{tabular}
Estimate of condition number
    5.6e+01
Estimate of error bound for computed solutions
    6.3e-15
```

