
NAG Library Function Document

nag_2d_spline_fit_panel (e02dac)

1 Purpose

nag_2d_spline_fit_panel (e02dac) forms a minimal, weighted least squares bicubic spline surface fit
with prescribed knots to a given set of data points.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_2d_spline_fit_panel (Integer m, const double x[], const double y[],
const double f[], const double w[], const Integer point[], double dl[],
double eps, double *sigma, Integer *rank, Nag_2dSpline *spline,
NagError *fail)

3 Description

nag_2d_spline_fit_panel (e02dac) determines a bicubic spline fit s x; yð Þ to the set of data points
xr; yr; frð Þ with weights wr, for r ¼ 1; 2; . . . ;m. The two sets of internal knots of the spline, �f g and
�f g, associated with the variables x and y respectively, are prescribed by you. These knots can be
thought of as dividing the data region of the x; yð Þ plane into panels (see Figure 1 in Section 5). A
bicubic spline consists of a separate bicubic polynomial in each panel, the polynomials joining together
with continuity up to the second derivative across the panel boundaries.

s x; yð Þ has the property that �, the sum of squares of its weighted residuals �r, for r ¼ 1; 2; . . . ;m,
where

�r ¼ wr s xr; yrð Þ � frð Þ ð1Þ
is as small as possible for a bicubic spline with the given knot sets. The function produces this
minimized value of � and the coefficients cij in the B-spline representation of s x; yð Þ – see Section 9.
nag_2d_spline_eval (e02dec), nag_2d_spline_eval_rect (e02dfc) and nag_2d_spline_deriv_rect (e02dhc)
are available to compute values and derivatives of the fitted spline from the coefficients cij.

The least squares criterion is not always sufficient to determine the bicubic spline uniquely: there may
be a whole family of splines which have the same minimum sum of squares. In these cases, the function
selects from this family the spline for which the sum of squares of the coefficients cij is smallest: in
other words, the minimal least squares solution. This choice, although arbitrary, reduces the risk of
unwanted fluctuations in the spline fit. The method employed involves forming a system of m linear
equations in the coefficients cij and then computing its least squares solution, which will be the minimal
least squares solution when appropriate. The basis of the method is described in Hayes and Halliday
(1974). The matrix of the equation is formed using a recurrence relation for B-splines which is
numerically stable (see Cox (1972) and de Boor (1972) – the former contains the more elementary
derivation but, unlike de Boor (1972), does not cover the case of coincident knots). The least squares
solution is also obtained in a stable manner by using orthogonal transformations, viz. a variant of
Givens rotation (see Gentleman (1973)). This requires only one row of the matrix to be stored at a time.
Advantage is taken of the stepped-band structure which the matrix possesses when the data points are
suitably ordered, there being at most sixteen nonzero elements in any row because of the definition of
B-splines. First the matrix is reduced to upper triangular form and then the diagonal elements of this
triangle are examined in turn. When an element is encountered whose square, divided by the mean
squared weight, is less than a threshold �, it is replaced by zero and the rest of the elements in its row
are reduced to zero by rotations with the remaining rows. The rank of the system is taken to be the
number of nonzero diagonal elements in the final triangle, and the nonzero rows of this triangle are
used to compute the minimal least squares solution. If all the diagonal elements are nonzero, the rank is
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equal to the number of coefficients cij and the solution obtained is the ordinary least squares solution,
which is unique in this case.

4 References

Cox M G (1972) The numerical evaluation of B-splines J. Inst. Math. Appl. 10 134–149

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

Gentleman W M (1973) Least squares computations by Givens transformations without square roots J.
Inst. Math. Applic. 12 329–336

Hayes J G and Halliday J (1974) The least squares fitting of cubic spline surfaces to general data sets J.
Inst. Math. Appl. 14 89–103

5 Arguments

1: m – Integer Input

On entry: m, the number of data points.

Constraint: m > 1.

2: x½m� – const double Input
3: y½m� – const double Input
4: f½m� – const double Input

On entry: the coordinates of the data point xr ; yr ; frð Þ, for r ¼ 1; 2; . . . ;m. The order of the data
points is immaterial, but see the array point.

5: w½m� – const double Input

On entry: the weight wr of the rth data point. It is important to note the definition of weight
implied by the equation (1) in Section 3, since it is also common usage to define weight as the
square of this weight. In this function, each wr should be chosen inversely proportional to the
(absolute) accuracy of the corresponding fr, as expressed, for example, by the standard deviation
or probable error of the fr. When the fr are all of the same accuracy, all the wr may be set equal
to 1:0.

6: point½dim� – const Integer Input

N o t e : t h e d i m e n s i o n , d i m , o f t h e a r r a y p o i n t mu s t b e a t l e a s t
mþ spline:nx� 7ð Þ � spline:ny� 7ð Þð Þ.
On entry: indexing information usually provided by nag_2d_panel_sort (e02zac) which enables
the data points to be accessed in the order which produces the advantageous matrix structure
mentioned in Section 3. This order is such that, if the x; yð Þ plane is thought of as being divided
into rectangular panels by the two sets of knots, all data in a panel occur before data in
succeeding panels, where the panels are numbered from bottom to top and then left to right with
the usual arrangement of axes, as indicated in Figure 1.
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LAMDA(4) LAMDA(5) LAMDA(6) LAMDA(7)

panel 4 8 12

panel 3 7 11

panel 2 6 10

panel 1 5 9

MU(8)

MU(7)

MU(6)

MU(5)

MU(4)

Y

X

Figure 1

A data point lying exactly on one or more panel sides is considered to be in the highest
numbered panel adjacent to the point. nag_2d_panel_sort (e02zac) should be called to obtain the
array point, unless it is provided by other means.

7: dl½dim� – double Output

Note: the dimension, dim, of the array dl must be at least spline:nx� 4ð Þ � spline:ny� 4ð Þ.
On exit: gives the squares of the diagonal elements of the reduced triangular matrix, divided by
the mean squared weight. It includes those elements, less than �, which are treated as zero (see
Section 3).

8: eps – double Input

On entry: a threshold � for determining the effective rank of the system of linear equations. The
rank is determined as the number of elements of the array dl which are nonzero. An element of
dl is regarded as zero if it is less than �. Machine precision is a suitable value for � in most
practical applications which have only 2 or 3 decimals accurate in data. If some coefficients of
the fit prove to be very large compared with the data ordinates, this suggests that � should be
increased so as to decrease the rank. The array dl will give a guide to appropriate values of � to
achieve this, as well as to the choice of � in other cases where some experimentation may be
needed to determine a value which leads to a satisfactory fit.

9: sigma – double * Output

On exit: �, the weighted sum of squares of residuals. This is not computed from the individual
residuals but from the right-hand sides of the orthogonally-transformed linear equations. For
further details see page 97 of Hayes and Halliday (1974). The two methods of computation are
theoretically equivalent, but the results may differ because of rounding error.
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10: rank – Integer * Output

On exit: the rank of the system as determined by the value of the threshold �.

rank ¼ spline:nx� 4ð Þ � spline:ny� 4ð Þ
The least squares solution is unique.

rank 6¼ spline:nx� 4ð Þ � spline:ny� 4ð Þ
The minimal least squares solution is computed.

11: spline – Nag_2dSpline *

Pointer to structure of type Nag_2dSpline with the following members:

nx – Integer Input

On entry: nx must specify the total number of knots associated with the variables x. It is
such that nx� 8 is the number of interior knots.

Constraint: nx � 8.

lamda – double Input/Output

On entry: lamda½iþ 4� must contain the ith interior knot �iþ4 associated with the variable
x, for i ¼ 1; 2; . . .nx� 8. The knots must be in nondecreasing order and lie strictly within
the range covered by the data values of x. A knot is a value of x at which the spline is
allowed to be discontinuous in the third derivative with respect to x, though continuous up
to the second derivative. This degree of continuity can be reduced, if you require, by the
use of coincident knots, provided that no more than four knots are chosen to coincide at
any point. Two, or three, coincident knots allow loss of continuity in, respectively, the
second and first derivative with respect to x at the value of x at which they coincide. Four
coincident knots split the spline surface into two independent parts. For choice of knots
see Section 9.

On exit: the interior knots lamda½4� to lamda½nx� 5� are unchanged, and the segments
LAMDA 1 : 4ð Þ and LAMDA nx� 3 : nxð Þ contain additional (exterior) knots introduced
by the function in order to define the full set of B-splines required. The four knots in the
first segment are all set equal to the lowest data value of x and the other four additional
knots are all set equal to the highest value: there is experimental evidence that coincident
end-knots are best for numerical accuracy. The complete array must be left undisturbed if
nag_2d_spline_eval (e02dec) or nag_2d_spline_eval_rect (e02dfc) is to be used
subsequently.

ny – Integer Input

On entry: ny must specify the total number of knots associated with the variable y.

It is such that ny� 8 is the number of interior knots.

Constraint: ny � 8.

mu – double Input/Output

On entry: mu½iþ 4� must contain the ith interior knot �iþ4 associated with the variable y,
i ¼ 1; 2; . . . ;ny� 8.

On exit: the same remarks apply to mu as to lamda above, with y replacing x, and y
replacing x.

c – double Output

On exit: gives the coefficients of the fit. c ny� 4ð Þ � i� 1ð Þ þ jð Þ is the coefficient cij of
Sections 3 and 9, for i ¼ 1; 2; . . . nx� 4 and j ¼ 1; 2; . . . ny� 4. These coefficients are
used by nag_2d_spline_eval (e02dec) or nag_2d_spline_eval_rect (e02dfc) to calculate
values of the fitted function.

In normal usage, the call to nag_2d_spline_fit_panel (e02dac) follows a call to
nag_2d_spline_interpolant (e01dac), nag_2d_spline_fit_grid (e02dcc) or nag_2d_spline_fit_scat
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(e02ddc), in which case, members of the structure spline will have been set up correctly for input
to nag_2d_spline_fit_panel (e02dac).

12: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_CONSTRAINT

On entry, nx ¼ valueh i.
Constraint: nx � 8.

On entry, ny ¼ valueh i.
Constraint: ny � 8.

NE_INT

On entry, m ¼ valueh i.
Constraint: m > 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_KNOTS_COINCIDE

More than four knots coincide at a single point.

NE_KNOTS_CONS

At least one set of knots is not in nondecreasing order.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

NE_PANEL_ORDER

Array point does not indicate the data points in panel order.

NE_WEIGHT_ZERO

All the weights are zero, or rank determined as zero.
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7 Accuracy

The computation of the B-splines and reduction of the observation matrix to triangular form are both
numerically stable.

8 Parallelism and Performance

nag_2d_spline_fit_panel (e02dac) is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to the number of data points, m, and to
3� spline:ny� 4ð Þ þ 4ð Þ2.
The B-spline representation of the bicubic spline is

s x; yð Þ ¼
X

i;j

cijMi xð ÞNj yð Þ

summed over i ¼ 1; 2; . . . ; spline:nx� 4 and over j ¼ 1; 2; . . . ; spline:ny� 4. Here Mi xð Þ and Nj yð Þ
denote normalized cubic B-splines, the former defined on the knots �i; �iþ1; . . . ; �iþ4 and the latter on
the knots �j; �jþ1; . . . ; �jþ4. For further details, see Hayes and Halliday (1974) for bicubic splines and
de Boor (1972) for normalized B-splines.

The choice of the interior knots, which help to determine the spline's shape, must largely be a matter of
trial and error. It is usually best to start with a small number of knots and, examining the fit at each
stage, add a few knots at a time in places where the fit is particularly poor. In intervals of x or y where
the surface represented by the data changes rapidly, in function value or derivatives, more knots will be
needed than elsewhere. In some cases guidance can be obtained by analogy with the case of coincident
knots: for example, just as three coincident knots can produce a discontinuity in slope, three close knots
can produce rapid change in slope. Of course, such rapid changes in behaviour must be adequately
represented by the data points, as indeed must the behaviour of the surface generally, if a satisfactory fit
is to be achieved. When there is no rapid change in behaviour, equally-spaced knots will often suffice.

In all cases the fit should be examined graphically before it is accepted as satisfactory.

The fit obtained is not defined outside the rectangle

�4 � x � �spline:nx�3; �4 � y � �spline:ny�3:

The reason for taking the extreme data values of x and y for these four knots is that, as is usual in data
fitting, the fit cannot be expected to give satisfactory values outside the data region. If, nevertheless,
you require values over a larger rectangle, this can be achieved by augmenting the data with two
artificial data points a; c; 0ð Þ and b; d; 0ð Þ with zero weight, where a � x � b, c � y � d defines the
enlarged rectangle. In the case when the data are adequate to make the least squares solution unique
(rank ¼ spline:nx� 4ð Þ � spline:ny� 4ð Þ), this enlargement will not affect the fit over the original
rectangle, except for possibly enlarged rounding errors, and will simply continue the bicubic
polynomials in the panels bordering the rectangle out to the new boundaries: in other cases the fit will
be affected. Even using the original rectangle there may be regions within it, particularly at its corners,
which lie outside the data region and where, therefore, the fit will be unreliable. For example, if there is
no data point in panel 1 of Figure 1 in Section 5, the least squares criterion leaves the spline
indeterminate in this panel: the minimal spline determined by the function in this case passes through
the value zero at the point �4; �4ð Þ.

10 Example

This example reads a value for �, and a set of data points, weights and knot positions. If there are more
y knots than x knots, it interchanges the x and y axes. It calls nag_2d_panel_sort (e02zac) to sort the
data points into panel order, nag_2d_spline_fit_panel (e02dac) to fit a bicubic spline to them, and
nag_2d_spline_eval (e02dec) to evaluate the spline at the data points.

Finally it prints:
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– the weighted sum of squares of residuals computed from the linear equations;

– the rank determined by nag_2d_spline_fit_panel (e02dac);

– data points, fitted values and residuals in panel order;

– the weighted sum of squares of the residuals; and

– the coefficients of the spline fit.

The program is written to handle any number of datasets.

Note: the data supplied in this example is not typical of a realistic problem: the number of data points
would normally be much larger (in which case the array dimensions would have to be increased); and
the value of � would normally be much smaller on most machines (see Section 5; the relatively large
value of 10�6 has been chosen in order to illustrate a minimal least squares solution when
rank < spline:nx� 4ð Þ � spline:ny� 4ð Þ; in this example spline:nx� 4ð Þ � spline:ny� 4ð Þ ¼ 24).

10.1 Program Text

/* nag_2d_spline_fit_panel (e02dac) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{

/* Initialized data */
char label[] = "xy";

/* Scalars */
double d, eps, sigma, sum, temp;
Integer exit_status = 0, i, iadres, itemp, j, m, nc, np, npoint, px, py,

rank;

/* Arrays */
double *dl = 0, *f = 0, *ff = 0, *lamda = 0, *mu = 0, *w = 0, *x = 0;
double *y = 0;
Integer *point = 0;

/* Nag Types */
Nag_2dSpline spline;
NagError fail;

exit_status = 0;
INIT_FAIL(fail);

/* Initialize spline */
spline.lamda = 0;
spline.mu = 0;
spline.c = 0;

printf("nag_2d_spline_fit_panel (e02dac) Example Program Results\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif
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#ifdef _WIN32
while (scanf_s("%lf", &eps) != EOF && exit_status == 0)

#else
while (scanf("%lf", &eps) != EOF && exit_status == 0)

#endif
{

/* Read data, interchanging X and Y axes if PX.LT.PY */
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%*[^\n] ", &m);
#else

scanf("%" NAG_IFMT "%*[^\n] ", &m);
#endif

if (m > 1) {
/* Allocate memory */
if (!(f = NAG_ALLOC(m, double)) ||

!(ff = NAG_ALLOC(m, double)) ||
!(w = NAG_ALLOC(m, double)) ||
!(x = NAG_ALLOC(m, double)) || !(y = NAG_ALLOC(m, double))

)
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}
else {

printf("Invalid m.\n");
exit_status = 1;
goto END;

}
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &px, &py);
#else

scanf("%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &px, &py);
#endif

if (px < 8 && py < 8) {
printf("px or py is too small.\n");
exit_status = 1;
goto END;

}
nc = (px - 4) * (py - 4);
np = (px - 7) * (py - 7);
npoint = m + (px - 7) * (py - 7);

/* Allocate memory */
if (!(dl = NAG_ALLOC(nc, double)) ||

!(point = NAG_ALLOC(npoint, Integer)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

if (px < py) {
itemp = px;
px = py;
py = itemp;
itemp = 1;
/* Allocate memory */
if (!(lamda = NAG_ALLOC(px, double)) || !(mu = NAG_ALLOC(py, double))

)
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

for (i = 0; i < m; ++i)
#ifdef _WIN32

scanf_s("%lf%lf%lf%lf", &y[i], &x[i], &f[i], &w[i]);
#else
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scanf("%lf%lf%lf%lf", &y[i], &x[i], &f[i], &w[i]);
#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

if (py > 8) {
#ifdef _WIN32

for (j = 4; j < py - 4; ++j)
scanf_s("%lf", &mu[j]);

#else
for (j = 4; j < py - 4; ++j)

scanf("%lf", &mu[j]);
#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

}
if (px > 8) {

#ifdef _WIN32
for (j = 4; j < px - 4; ++j)

scanf_s("%lf", &lamda[j]);
#else

for (j = 4; j < px - 4; ++j)
scanf("%lf", &lamda[j]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

}
}
else {

/* Allocate memory */
if (!(lamda = NAG_ALLOC(px, double)) || !(mu = NAG_ALLOC(py, double))

)
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
itemp = 0;
for (i = 0; i < m; ++i)

#ifdef _WIN32
scanf_s("%lf%lf%lf%lf", &x[i], &y[i], &f[i], &w[i]);

#else
scanf("%lf%lf%lf%lf", &x[i], &y[i], &f[i], &w[i]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

if (px > 8) {
#ifdef _WIN32

for (j = 4; j < px - 4; ++j)
scanf_s("%lf", &lamda[j]);

#else
for (j = 4; j < px - 4; ++j)

scanf("%lf", &lamda[j]);
#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
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#endif
}
if (py > 8) {

#ifdef _WIN32
for (j = 4; j < py - 4; ++j)

scanf_s("%lf", &mu[j]);
#else

for (j = 4; j < py - 4; ++j)
scanf("%lf", &mu[j]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

}
}

printf("\nInterior %1.1s -knots\n", label + itemp);
for (j = 4; j < px - 4; ++j)

printf("%11.4f\n", lamda[j]);
if (px == 8)

printf("None\n");

printf("\nInterior %1.1s -knots\n", label + (2 - itemp - 1));
for (j = 4; j < py - 4; ++j)

printf("%1s%11.4f\n", "", mu[j]);
if (py == 8)

printf("None\n");

/* nag_2d_panel_sort (e02zac).
* Sort two-dimensional data into panels for fitting bicubic
* splines
*/

nag_2d_panel_sort(px, py, lamda, mu, m, x, y, point, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_2d_panel_sort (e02zac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Fit bicubic spline to data points */
spline.nx = px;
spline.ny = py;

if (!(spline.c = NAG_ALLOC((spline.nx - 4) * (spline.ny - 4), double)) ||
!(spline.lamda = NAG_ALLOC(spline.nx, double)) ||
!(spline.mu = NAG_ALLOC(spline.ny, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

for (i = 0; i < spline.nx; i++)
spline.lamda[i] = lamda[i];

for (i = 0; i < spline.ny; i++)
spline.mu[i] = mu[i];

/* nag_2d_spline_fit_panel (e02dac).
* Least squares surface fit, bicubic splines
*/

nag_2d_spline_fit_panel(m, x, y, f, w, point, dl, eps, &sigma, &rank,
&spline, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_2d_spline_fit_panel (e02dac).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
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printf("\nSum of squares of residual RHS%16.3e\n", sigma);
printf("\nRank%5" NAG_IFMT "\n", rank);

/* nag_2d_spline_eval (e02dec).
* Evaluation of bicubic spline, at a set of points
*/

nag_2d_spline_eval(m, x, y, ff, &spline, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_2d_spline_eval (e02dec).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

sum = 0.;
if (itemp == 1)

printf("\nx and y have been interchanged\n\n");

/*Output data points, fitted values and residuals */
printf(" X Y Data Fit Residual\n");
for (i = 0; i < np; ++i) {

iadres = i + m;
while ((iadres = point[iadres] - 1) >= 0) {

temp = ff[iadres] - f[iadres];

printf("%11.4f%11.4f%11.4f%11.4f%12.3e\n", x[iadres],
y[iadres], f[iadres], ff[iadres], temp);

/* Computing 2nd power */
d = temp * w[iadres];
sum += d * d;

}
}

printf("\nSum of squared residuals%16.3e\n", sum);
printf("\nSpline coefficients\n");
for (i = 0; i < px - 4; ++i) {

for (j = 0; j < py - 4; ++j)
printf("%11.4f", spline.c[i * (py - 4) + j]);

printf("\n");
}

END:
NAG_FREE(dl);
NAG_FREE(f);
NAG_FREE(ff);
NAG_FREE(lamda);
NAG_FREE(mu);
NAG_FREE(w);
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(point);
NAG_FREE(spline.lamda);
NAG_FREE(spline.mu);
NAG_FREE(spline.c);

}
return exit_status;

}

10.2 Program Data

nag_2d_spline_fit_panel (e02dac) Example Program Data
0.000001

30
8

10
-0.52 0.60 0.93 10.
-0.61 -0.95 -1.79 10.
0.93 0.87 0.36 10.
0.09 0.84 0.52 10.
0.88 0.17 0.49 10.

-0.70 -0.87 -1.76 10.
1.00 1.00 0.33 1.
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1.00 0.10 0.48 1.
0.30 0.24 0.65 1.

-0.77 -0.77 -1.82 1.
-0.23 0.32 0.92 1.
-1.00 1.00 1.00 1.
-0.26 -0.63 8.88 1.
-0.83 -0.66 -2.01 1.
0.22 0.93 0.47 1.
0.89 0.15 0.49 1.

-0.80 0.99 0.84 1.
-0.88 -0.54 -2.42 1.
0.68 0.44 0.47 1.

-0.14 -0.72 7.15 1.
0.67 0.63 0.44 1.

-0.90 -0.40 -3.34 1.
-0.84 0.20 2.78 1.
0.84 0.43 0.44 1.
0.15 0.28 0.70 1.

-0.91 -0.24 -6.52 1.
-0.35 0.86 0.66 1.
-0.16 -0.41 2.32 1.
-0.35 -0.05 1.66 1.
-1.00 -1.00 -1.00 1.

-0.5
0.0

10.3 Program Results

nag_2d_spline_fit_panel (e02dac) Example Program Results

Interior y -knots
-0.5000
0.0000

Interior x -knots
None

Sum of squares of residual RHS 1.467e+01

Rank 22

x and y have been interchanged

X Y Data Fit Residual
-0.9500 -0.6100 -1.7900 -1.7931 -3.126e-03
-0.8700 -0.7000 -1.7600 -1.7521 7.893e-03
-0.7700 -0.7700 -1.8200 -2.4301 -6.101e-01
-0.6300 -0.2600 8.8800 7.6346 -1.245e+00
-0.6600 -0.8300 -2.0100 -1.5815 4.285e-01
-0.5400 -0.8800 -2.4200 -2.6795 -2.595e-01
-0.7200 -0.1400 7.1500 7.5708 4.208e-01
-1.0000 -1.0000 -1.0000 -1.0228 -2.277e-02
-0.4000 -0.9000 -3.3400 -4.6955 -1.356e+00
-0.2400 -0.9100 -6.5200 -4.7072 1.813e+00
-0.4100 -0.1600 2.3200 2.7039 3.839e-01
-0.0500 -0.3500 1.6600 2.2865 6.265e-01
0.6000 -0.5200 0.9300 0.9441 1.407e-02
0.8700 0.9300 0.3600 0.3529 -7.097e-03
0.8400 0.0900 0.5200 0.5024 -1.761e-02
0.1700 0.8800 0.4900 0.4705 -1.951e-02
1.0000 1.0000 0.3300 0.6315 3.015e-01
0.1000 1.0000 0.4800 1.4910 1.011e+00
0.2400 0.3000 0.6500 0.9241 2.741e-01
0.3200 -0.2300 0.9200 -0.3692 -1.289e+00
1.0000 -1.0000 1.0000 1.0835 8.352e-02
0.9300 0.2200 0.4700 1.4912 1.021e+00
0.1500 0.8900 0.4900 0.4414 -4.861e-02
0.9900 -0.8000 0.8400 0.5495 -2.905e-01
0.4400 0.6800 0.4700 1.5862 1.116e+00
0.6300 0.6700 0.4400 0.6288 1.888e-01
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0.2000 -0.8400 2.7800 1.7123 -1.068e+00
0.4300 0.8400 0.4400 0.6888 2.488e-01
0.2800 0.1500 0.7000 0.7713 7.134e-02
0.8600 -0.3500 0.6600 0.9347 2.747e-01

Sum of squared residuals 1.467e+01

Spline coefficients
-1.0228 115.4668 -433.5558 -68.1973
24.8426 -140.1485 258.5042 15.6756

-29.4878 132.2933 -173.5103 20.0983
9.9575 -51.6200 67.6666 -5.8765

10.0577 4.7543 -15.3533 -0.3260
1.0835 -2.7932 7.7708 0.6315

Example Program
Evaluation of Least-squares Bi-cubic Spline Fit
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