
NAG Library Function Document

nag_opt_lsq_no_deriv (e04fcc)

1 Purpose

nag_opt_lsq_no_deriv (e04fcc) is a comprehensive algorithm for finding an unconstrained minimum of
a sum of squares of m nonlinear functions in n variables m � nð Þ. No derivatives are required.

nag_opt_lsq_no_deriv (e04fcc) is intended for objective functions which have continuous first and
second derivatives (although it will usually work even if the derivatives have occasional
discontinuities).

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_lsq_no_deriv (Integer m, Integer n,

void (*lsqfun)(Integer m, Integer n, const double x[], double fvec[],
Nag_Comm *comm),

double x[], double *fsumsq, double fvec[], double fjac[],
Integer tdfjac, Nag_E04_Opt *options, Nag_Comm *comm, NagError *fail)

3 Description

nag_opt_lsq_no_deriv (e04fcc) is applicable to problems of the form:

Minimize F xð Þ ¼
Xm
i¼1

fi xð Þ½ �2

where x ¼ x1; x2; . . . ; xnð ÞT and m � n. (The functions fi xð Þ are often referred to as ‘residuals’.) You
must supply a C function, lsqfun, to calculate the values of the fi xð Þ at any point x.

From a starting point x 1ð Þ nag_opt_lsq_no_deriv (e04fcc) generates a sequence of points x 2ð Þ; x 3ð Þ; . . . ;
which is intended to converge to a local minimum of F xð Þ. The sequence of points is given by

x kþ1ð Þ ¼ x kð Þ þ � kð Þp kð Þ

where the vector p kð Þ is a direction of search, and � kð Þ is chosen such that F x kð Þ þ � kð Þp kð Þ� �
is

approximately a minimum with respect to � kð Þ.

The vector p kð Þ used depends upon the reduction in the sum of squares obtained during the last iteration.
If the sum of squares was sufficiently reduced, then p kð Þ is an approximation to the Gauss–Newton
direction; otherwise additional function evaluations are made so as to enable p kð Þ to be a more accurate
approximation to the Newton direction.

The method is designed to ensure that steady progress is made whatever the starting point, and to have
the rapid ultimate convergence of Newton's method.

4 References

Gill P E and Murray W (1978) Algorithms for the solution of the nonlinear least squares problem SIAM
J. Numer. Anal. 15 977–992

e04 – Minimizing or Maximizing a Function e04fcc

Mark 26 e04fcc.1

5 Arguments

1: m – Integer Input

On entry: m, the number of residuals, fi xð Þ.

2: n – Integer Input

On entry: n, the number of variables, xj.

Constraint: 1 � n � m.

3: lsqfun – function, supplied by the user External Function

lsqfun must calculate the vector of values fi xð Þ at any point x. (However, if you do not wish to
calculate the residuals at a particular x, there is the option of setting an argument to cause
nag_opt_lsq_no_deriv (e04fcc) to terminate immediately.)

The specification of lsqfun is:

void lsqfun (Integer m, Integer n, const double x[], double fvec[],
Nag_Comm *comm)

1: m – Integer Input
2: n – Integer Input

On entry: the numbers m and n of residuals and variables, respectively.

3: x½n� – const double Input

On entry: the point x at which the values of the fi are required.

4: fvec½m� – double Output

On exit: unless comm!flag is reset to a negative number, on exit fvec½i � 1� must
contain the value of fi at the point x, for i ¼ 1; 2; . . . ;m.

5: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to lsqfun.

flag – Integer Input/Output

On entry: comm!flag contains a non-negative number.

On exit: if lsqfun resets comm!flag to some negative number then
nag_opt_lsq_no_deriv (e04fcc) will terminate immediately with the error
indicator NE_USER_STOP. If fail is supplied to nag_opt_lsq_no_deriv
(e04fcc), fail:errnum will be set to the user's setting of comm!flag.

first – Nag_Boolean Input

On entry: the value Nag_TRUE on the first call to lsqfun and Nag_FALSE for all
subsequent calls.

nf – Integer Input

On entry: the number of calls made to lsqfun including the current one.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void * and
char * otherwise. Before calling nag_opt_lsq_no_deriv (e04fcc) these pointers
may be allocated memory and initialized with various quantities for use by
lsqfun when called from nag_opt_lsq_no_deriv (e04fcc).

e04fcc NAG Library Manual

e04fcc.2 Mark 26

Note: lsqfun should be tested separately before being used in conjunction with
nag_opt_lsq_no_deriv (e04fcc). The array x must not be changed within lsqfun.

4: x½n� – double Input/Output

On entry: x½j � 1� must be set to a guess at the jth component of the position of the minimum,
for j ¼ 1; 2; . . . ; n.

On exit: the final point x�. On successful exit, x½j� 1� is the jth component of the estimated
position of the minimum.

5: fsumsq – double * Output

On exit: the value of F xð Þ, the sum of squares of the residuals fi xð Þ, at the final point given in x.

6: fvec½m� – double Output

On exit: fvec½i � 1� is the value of the residual fi xð Þ at the final point given in x, for
i ¼ 1; 2; . . . ;m.

7: fjac½m� tdfjac� – double Output

On exit: fjac½ i � 1ð Þ � tdfjacþ j � 1� contains the estimate of the first derivative
@fi
@xj

at the final

point given in x, for i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n.

8: tdfjac – Integer Input

On entry: the stride separating matrix column elements in the array fjac.

Constraint: tdfjac � n.

9: options – Nag_E04_Opt * Input/Output

On entry/exit: a pointer to a structure of type Nag_E04_Opt whose members are optional
parameters for nag_opt_lsq_no_deriv (e04fcc). These structure members offer the means of
adjusting some of the argument values of the algorithm and on output will supply further details
of the results. A description of the members of options is given in Section 11.2.

If any of these optional parameters are required then the structure options should be declared and
initialized by a call to nag_opt_init (e04xxc) and supplied as an argument to nag_opt_lsq_no_der
iv (e04fcc). However, if the optional parameters are not required the NAG defined null pointer,
E04_DEFAULT, can be used in the function call.

10: comm – Nag_Comm * Input/Output

Note: comm is a NAG defined type (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

On entry/exit: structure containing pointers for communication to user-supplied functions; see the
above description of lsqfun for details. If you do not need to make use of this communication
feature the null pointer NAGCOMM_NULL may be used in the call to nag_opt_lsq_no_deriv
(e04fcc); comm will then be declared internally for use in calls to user-supplied functions.

11: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

e04 – Minimizing or Maximizing a Function e04fcc

Mark 26 e04fcc.3

5.1 Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be controlled
w i t h t h e o p t i o n options:print level (s e e S e c t i o n 1 1 . 2) . T h e d e f a u l t ,
options:print level ¼ Nag Soln Iter, provides a single line of output at each iteration and the final
result. The line of results printed at each iteration gives:

Itn the current iteration number k.

Nfun the cumulative number of calls to lsqfun.

Objective the current value of the objective function, F x kð Þ� �
.

Norm g the Euclidean norm of the gradient of F x kð Þ� �
.

Norm x the Euclidean norm of x kð Þ.

Norm(x(k�1)�x(k))

the Euclidean norm of x k�1ð Þ � x kð Þ.

Step the step � kð Þ taken along the computed search direction p kð Þ.

The printout of the final result consists of:

x the final point x�.

g the estimate of the gradient of F at the final point.

Residuals the values of the residuals fi at the final point.

Sum of squares the value of F x�ð Þ, the sum of squares of the residuals at the final point.

6 Error Indicators and Warnings

If one of NE_USER_STOP, NE_2_INT_ARG_LT, NE_OPT_NOT_INIT, NE_BAD_PARAM, NE_2_R-
EAL_ARG_LT, NE_INVALID_INT_RANGE_1, NE_INVALID_REAL_RANGE_EF, NE_INVALI-
D_REAL_RANGE_FF and NE_ALLOC_FAIL occurs, no values will have been assigned to fsumsq,
or to the elements of fvec, fjac, options:s or options:v.

The exits NW_TOO_MANY_ITER, NW_COND_MIN, and NE_SVD_FAIL may also be caused by
mistakes in lsqfun, by the formulation of the problem or by an awkward function. If there are no such
mistakes it is worth restarting the calculations from a different starting point (not the point at which the
failure occurred) in order to avoid the region which caused the failure.

NE_2_INT_ARG_LT

On entry, m ¼ valueh i while n ¼ valueh i. These arguments must satisfy m � n.

On entry, options:tdv ¼ valueh i while n ¼ valueh i. These arguments must satisfy
options:tdv � n.

On entry, tdfjac ¼ valueh i while n ¼ valueh i. These arguments must satisfy tdfjac � n.

NE_2_REAL_ARG_LT

On entry, options:step max ¼ valueh i while options:optim tol ¼ valueh i. These arguments must
satisfy options:step max � options:optim tol.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument options:print level had an illegal value.

e04fcc NAG Library Manual

e04fcc.4 Mark 26

NE_INT_ARG_LT

On entry, n ¼ valueh i.
Constraint: n � 1.

NE_INVALID_INT_RANGE_1

Value valueh i given to options:max iter not valid. Correct range is options:max iter � 0.

NE_INVALID_REAL_RANGE_EF

Value valueh i g iven to options:optim tol no t va l id . Cor rec t r ange i s valueh i
� options:optim tol < 1:0.

NE_INVALID_REAL_RANGE_FF

Va l u e valueh i g i v e n t o options:linesearch tol n o t v a l i d . C o r r e c t r a n g e i s
0:0 � options:linesearch tol < 1:0.

NE_NOT_APPEND_FILE

Cannot open file stringh i for appending.

NE_NOT_CLOSE_FILE

Cannot close file stringh i.

NE_OPT_NOT_INIT

Options structure not initialized.

NE_SVD_FAIL

The computation of the singular value decomposition of the Jacobian matrix has failed to
converge in a reasonable number of sub-iterations.

It may be worth applying nag_opt_lsq_no_deriv (e04fcc) again starting with an initial
approximation which is not too close to the point at which the failure occurred.

NE_USER_STOP

User requested termination, user flag value ¼ valueh i.
This exit occurs if you set comm!flag to a negative value in lsqfun. If fail is supplied the value
of fail:errnum will be the same as your setting of comm!flag.

NE_WRITE_ERROR

Error occurred when writing to file stringh i.

NW_COND_MIN

The conditions for a minimum have not all been satisfied, but a lower point could not be found.

This could be because options:optim tol has been set so small that rounding errors in the
evaluation of the residuals make attainment of the convergence conditions impossible.

NW_TOO_MANY_ITER

The maximum number of iterations, valueh i, have been performed.

If steady reductions in the sum of squares, F xð Þ, were monitored up to the point where this exit
occurred, then the exit probably occurred simply because options:max iter was set too small, so
the calculations should be restarted from the final point held in x. This exit may also indicate that
F xð Þ has no minimum.

e04 – Minimizing or Maximizing a Function e04fcc

Mark 26 e04fcc.5

7 Accuracy

If the problem is reasonably well scaled and a successful exit is made, then, for a computer with a
mantissa of t decimals, one would expect to get about t=2� 1 decimals accuracy in the components of
x and between t� 1 (if F xð Þ is of order 1 at the minimum) and 2t� 2 (if F xð Þ is close to zero at the
minimum) decimals accuracy in F xð Þ.
A successful exit (NE_NOERROR) is made from nag_opt_lsq_no_deriv (e04fcc) when (B1, B2 and
B3) or B4 or B5 hold, where

B1 � � kð Þ � p kð Þ�� �� < options:optim tolþ �ð Þ � 1:0þ x kð Þ�� ��� �

B2 � F kð Þ � F k�1ð Þ�� �� < options:optim tolþ �ð Þ2 � 1:0þ F kð Þ� �

B3 � g kð Þ�� �� < �1=3 þ options:optim tol
� �� 1:0þ F kð Þ� �

B4 � F kð Þ < �2

B5 � g kð Þ�� �� < ��
ffiffiffiffiffiffiffiffiffi
F kð Þ

p� �1=2

and where :k k, � and the optional parameter options:optim tol are as defined in Section 11.2, while F kð Þ

and g kð Þ are the values of F xð Þ and its vector of estimated first derivatives at x kð Þ.

If fail:code ¼ NE NOERROR then the vector in x on exit, xsol , is almost certainly an estimate of xtrue,
the position of the minimum to the accuracy specified by options:optim tol.

If fail:code ¼ NW COND MIN, then xsol may still be a good estimate of xtrue, but to verify this you
should make the following checks. If

(a) the sequence F x kð Þ� �	

converges to F xsolð Þ at a superlinear or a fast linear rate, and

(b) g xsolð ÞTg xsolð Þ < 10�,

where T denotes transpose, then it is almost certain that xsol is a close approximation to the minimum.
When (b) is true, then usually F xsolð Þ is a close approximation to F xtrueð Þ.
Further suggestions about confirmation of a computed solution are given in the e04 Chapter
Introduction.

8 Parallelism and Performance

nag_opt_lsq_no_deriv (e04fcc) is not threaded in any implementation.

9 Further Comments

The number of iterations required depends on the number of variables, the number of residuals, the
behaviour of F xð Þ, the accuracy demanded and the distance of the starting point from the solution. The
number of multiplications performed per iteration of nag_opt_lsq_no_deriv (e04fcc) varies, but for
m >> n is approximately n�m2 þO n3

� �
. In addition, each iteration makes at least nþ 1 calls of

lsqfun. So, unless the residuals can be evaluated very quickly, the run time will be dominated by the
time spent in lsqfun.

Ideally, the problem should be scaled so that, at the solution, F xð Þ and the corresponding values of the
xj are each in the range �1;þ1ð Þ, and so that at points one unit away from the solution, F xð Þ differs
from its value at the solution by approximately one unit. This will usually imply that the Hessian matrix
of F xð Þ at the solution is well-conditioned. It is unlikely that you will be able to follow these
recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the
difficulty of the minimization problem, so that nag_opt_lsq_no_deriv (e04fcc) will take less computer
time.

When the sum of squares represents the goodness-of-fit of a nonlinear model to observed data, elements
of the variance-covariance matrix of the estimated regression coefficients can be computed by a

e04fcc NAG Library Manual

e04fcc.6 Mark 26

subsequent call to nag_opt_lsq_covariance (e04ycc), using information returned in the arrays options:s
and options:v. See nag_opt_lsq_covariance (e04ycc) for further details.

10 Example

This example shows option values being assigned directly within the program text and by reading
values from a data file. The options structure is declared and initialized by nag_opt_init (e04xxc).
Values are then assigned directly to options options:outfile and options:optim tol and two further
options are read from the data file by use of nag_opt_read (e04xyc). The memory freeing function
nag_opt_free (e04xzc) is used to free the memory assigned to the pointers in the option structure. You
must not use the standard C function free() for this purpose.

10.1 Program Text

/* nag_opt_lsq_no_deriv (e04fcc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*
*/

#include <nag.h>
#include <stdio.h>
#include <string.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nage04.h>
#include <nagf16.h>
#include <nagx02.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL lsqfun(Integer m, Integer n, const double x[],
double fvec[], Nag_Comm *comm);

static void NAG_CALL lsqgrd(Integer m, Integer n, double *fvec, double *fjac,
Integer ldfjac, double *g);

#ifdef __cplusplus
}
#endif

#define MMAX 15
#define TMAX 3

/* Define a user structure template to store data in lsqfun. */
struct user
{

double y[MMAX];
double t[MMAX][TMAX];

};

int main(void)
{

const char *optionsfile = "e04fcce.opt";
Integer exit_status = 0;
Nag_Boolean print;
Integer i, j, m, n, nt, tdfjac;
Nag_Comm comm;
Nag_E04_Opt options;
double *fjac = 0, fsumsq, *fvec = 0, *x = 0, *g = 0;
struct user s;
NagError fail;

INIT_FAIL(fail);

e04 – Minimizing or Maximizing a Function e04fcc

Mark 26 e04fcc.7

printf("nag_opt_lsq_no_deriv (e04fcc) Example Program Results\n");
fflush(stdout);

#ifdef _WIN32
scanf_s(" %*[^\n]"); /* Skip heading in data file */

#else
scanf(" %*[^\n]"); /* Skip heading in data file */

#endif
n = 3;
m = 15;
if (m >= 1 && n <= m) {

if (!(fjac = NAG_ALLOC(m * n, double)) ||
!(fvec = NAG_ALLOC(m, double)) ||
!(x = NAG_ALLOC(n, double)) ||
!(g = NAG_ALLOC(n, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
tdfjac = n;

}
else {

printf("Invalid m or n.\n");
exit_status = 1;
return exit_status;

}

/* Read data into structure.
* Observations t (j = 0, 1, 2) are held in s->t[i][j]
* (i = 0, 1, 2, . . ., 14)
*/

nt = 3;
for (i = 0; i < m; ++i) {

#ifdef _WIN32
scanf_s("%lf", &s.y[i]);

#else
scanf("%lf", &s.y[i]);

#endif
#ifdef _WIN32

for (j = 0; j < nt; ++j)
scanf_s("%lf", &s.t[i][j]);

#else
for (j = 0; j < nt; ++j)

scanf("%lf", &s.t[i][j]);
#endif

}

/* Set up the starting point */
x[0] = 0.5;
x[1] = 1.0;
x[2] = 1.5;

/* nag_opt_init (e04xxc).
* Initialization function for option setting
*/

nag_opt_init(&options); /* Initialize options structure */
/* Set one option directly. */
/* nag_machine_precision (x02ajc).
* The machine precision
*/

options.optim_tol = 10.0 * sqrt(nag_machine_precision);

/* Read remaining option values from file */
print = Nag_FALSE;
/* nag_opt_read (e04xyc).
* Read options from a text file
*/

nag_opt_read("e04fcc", optionsfile, &options, print, "stdout", &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_opt_read (e04xyc).\n%s\n", fail.message);

e04fcc NAG Library Manual

e04fcc.8 Mark 26

exit_status = 1;
goto END;

}

/* Assign address of user defined structure to
* comm.p for communication to lsqfun().
*/

comm.p = (Pointer) &s;

/* nag_opt_lsq_no_deriv (e04fcc), see above. */
nag_opt_lsq_no_deriv(m, n, lsqfun, x, &fsumsq, fvec, fjac, tdfjac,

&options, &comm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error/Warning from nag_opt_lsq_no_deriv (e04fcc).\n%s\n",
fail.message);

if (fail.code != NW_COND_MIN)
exit_status = 1;

}

if (fail.code == NE_NOERROR || fail.code == NW_COND_MIN)
{

printf("On exit, the sum of squares is %12.4f\n", fsumsq);
printf("at the point");
for (i=0; i<n; i++)

printf("%12.4lf", x[i]);
printf("\n");

lsqgrd(m,n,fvec,fjac,tdfjac,g);
printf("The estimated gradient is");
for (i=0; i<n; i++)

printf("%13.4e", g[i]);
printf("\n");
printf(" (machine dependent)\n");
printf("and the residuals are\n");
for (i=0; i<m; i++)

printf("%9.1e\n", fvec[i]);
}

/* Free memory allocated to pointers s and v */
/* nag_opt_free (e04xzc).
* Memory freeing function for use with option setting
*/

nag_opt_free(&options, "all", &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_opt_free (e04xzc).\n%s\n", fail.message);
exit_status = 2;
goto END;

}
END:

NAG_FREE(fjac);
NAG_FREE(fvec);
NAG_FREE(x);
NAG_FREE(g);

return exit_status;
}

static void NAG_CALL lsqfun(Integer m, Integer n, const double x[],
double fvec[], Nag_Comm *comm)

{
/* Function to evaluate the residuals.
*
* To avoid the use of a global varibale this example assigns the address
* of a user defined structure to comm.p in the main program (where the
* data was also read in).
* The address of this structure is recovered in each call to lsqfun()
* from comm->p and the structure used in the calculation of the residuals.
*/

Integer i;
struct user *s = (struct user *) comm->p;

e04 – Minimizing or Maximizing a Function e04fcc

Mark 26 e04fcc.9

for (i = 0; i < m; ++i)
fvec[i] = x[0] + s->t[i][0] /

(x[1] * s->t[i][1] + x[2] * s->t[i][2]) - s->y[i];
} /* lsqfun */

static void NAG_CALL lsqgrd(Integer m, Integer n, double *fvec, double *fjac,
Integer ldfjac, double *g)

{
/* Function to evaluate gradient of the sum of squares */
NagError fail;
Integer i;
INIT_FAIL(fail);
nag_dgemv(Nag_RowMajor,Nag_Trans,m,n,1.0,fjac,ldfjac,fvec,1,0.0,g,1,&fail);
for (i=0; i<n; i++)

g[i] = 2.0*g[i];
return;

}

10.2 Program Data

nag_opt_lsq_no_deriv (e04fcc) Example Program Data
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

nag_opt_lsq_no_deriv (e04fcc) Example Program Optional Parameters

Following optional parameter settings are read by e04xyc

begin e04fcc

/* Results printout set to none */
list = Nag_FALSE
print_level = Nag_NoPrint

/* Estimate minimum will be within 10 units of the
* starting point.
*/

step_max = 10.0

end

10.3 Program Results

nag_opt_lsq_no_deriv (e04fcc) Example Program Results
On exit, the sum of squares is 0.0082
at the point 0.0824 1.1330 2.3437
The estimated gradient is 2.3856e-09 -1.2799e-09 -1.1286e-09

(machine dependent)
and the residuals are
-5.9e-03
-2.7e-04
2.7e-04
6.5e-03

-8.2e-04
-1.3e-03
-4.5e-03

e04fcc NAG Library Manual

e04fcc.10 Mark 26

-2.0e-02
8.2e-02

-1.8e-02
-1.5e-02
-1.5e-02
-1.1e-02
-4.2e-03
6.8e-03

11 Optional Parameters

A number of optional input and output arguments to nag_opt_lsq_no_deriv (e04fcc) are available
through the structure argument options, type Nag_E04_Opt. a argument may be selected by assigning
an appropriate value to the relevant structure member; those arguments not selected will be assigned
default values. If no use is to be made of any of the optional parameters you should use the NAG
defined null pointer, E04_DEFAULT, in place of options when calling nag_opt_lsq_no_deriv (e04fcc);
the default settings will then be used for all arguments.

Before assigning values to options directly the structure must be initialized by a call to the function
nag_opt_init (e04xxc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_opt_read (e04xyc) in which
case initialization of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, this must be
done directly in the calling program, they cannot be assigned using nag_opt_read (e04xyc).

11.1 Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for
nag_opt_lsq_no_deriv (e04fcc) together with their default values where relevant. The number � is a
generic notation for machine precision (see nag_machine_precision (X02AJC)).

Boolean list Nag_TRUE
Nag_PrintType print_level Nag Soln Iter
char outfile[80] stdout

void (*print_fun)() NULL
Integer max_iter max 50; 5nð Þ
double optim_tol

ffiffi
�

p
double linesearch_tol 0.5 (0.0 if n ¼ 1)
double step_max 100000.0
double *s size n
double *v size n� n
Integer tdv n
Integer grade

Integer iter

Integer nf

11.2 Description of the Optional Parameters

list – Nag_Boolean Default ¼ Nag TRUE

On entry: if options:list ¼ Nag TRUE the argument settings in the call to nag_opt_lsq_no_deriv
(e04fcc) will be printed.

print level – Nag_PrintType Default ¼ Nag Soln Iter

On entry: the level of results printout produced by nag_opt_lsq_no_deriv (e04fcc). The following
values are available:

e04 – Minimizing or Maximizing a Function e04fcc

Mark 26 e04fcc.11

Nag NoPrint No output.

Nag Soln The final solution.

Nag Iter One line of output for each iteration.

Nag Soln Iter The final solution and one line of output for each iteration.

Nag Soln Iter Full The final solution and detailed printout at each iteration.

Details of each level of results printout are described in Section 9.

C o n s t r a i n t : options:print level ¼ Nag NoPrint, Nag Soln, Nag Iter, Nag Soln Iter o r
Nag Soln Iter Full.

outfile – const char[80] Default ¼ stdout

On entry: the name of the file to which results should be printed. If options:outfile½0� ¼ n0 then the
stdout stream is used.

print fun – pointer to function Default ¼ NULL

On entry: printing function defined by you; the prototype of options:print fun is

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 9 for further details.

max iter – Integer Default ¼ max 50; 5nð Þ
On entry: the limit on the number of iterations allowed before termination.

Constraint: options:max iter � 0.

optim tol – double Default ¼ ffiffi
�

p

On entry: the accuracy in x to which the solution is required. If xtrue is the true value of x at the
minimum, then xsol , the estimated position prior to a normal exit, is such that

xsol � xtruek k < options:optim tol� 1:0þ xtruek kð Þ;

where yk k ¼ Pn
j¼1y

2
j

� �1=2
. For example, if the elements of xsol are not much larger than 1.0 in modulus

and if options:optim tol ¼ 1:0� 10�5, then xsol is usually accurate to about 5 decimal places. (For
further details see Section 9.) If F xð Þ and the variables are scaled roughly as described in Section 9 and
� is the machine precision, then a setting of order options:optim tol ¼ ffiffi

�
p

will usually be appropriate.

Constraint: 10� � options:optim tol < 1:0.

linesearch tol – double Default ¼ 0:5. (If n ¼ 1, default ¼ 0:0)

On entry: every iteration of nag_opt_lsq_no_deriv (e04fcc) involves a linear minimization, i.e.,
minimization of F x kð Þ þ � kð Þp kð Þ� �

with respect to � kð Þ. options:linesearch tol specifies how accurately

the linear minimizations are to be performed. The minimum with respect to � kð Þ will be located more
accurately for small values of options:linesearch tol (say 0.01) than for large values (say 0.9).
Although accurate linear minimizations will generally reduce the number of iterations performed by
nag_opt_lsq_no_deriv (e04fcc), they will increase the number of calls of lsqfun made each iteration.
On balance it is usually more efficient to perform a low accuracy minimization.

Constraint: 0:0 � options:linesearch tol < 1:0.

step max – double Default ¼ 100000:0

On entry: an estimate of the Euclidean distance between the solution and the starting point supplied.
(For maximum efficiency, a slight overestimate is preferable.) nag_opt_lsq_no_deriv (e04fcc) will
ensure that, for each iteration,

Pn
j¼1 x

kð Þ
j � x

k�1ð Þ
j

� �2
� options:step maxð Þ2

e04fcc NAG Library Manual

e04fcc.12 Mark 26

where k is the iteration number. Thus, if the problem has more than one solution, nag_opt_lsq_no_deriv
(e04fcc) is most likely to find the one nearest to the starting point. On difficult problems, a realistic
choice can prevent the sequence x kð Þ entering a region where the problem is ill-behaved and can help
avoid overflow in the evaluation of F xð Þ. However, an underestimate of options:step max can lead to
inefficiency.

Constraint: options:step max � options:optim tol.

s – double * Default memory ¼ n

On entry: n values of memory will be automatically allocated by nag_opt_lsq_no_deriv (e04fcc) and
this is the recommended method of use of options:s. However you may supply memory from the
calling program.

On exit: the singular values of the estimated Jacobian matrix at the final point. Thus options:s may be
useful as information about the structure of your problem.

v – double * Default memory ¼ n� n

On entry: n� n values of memory will be automatically allocated by nag_opt_lsq_no_deriv (e04fcc)
and this is the recommended method of use of options:v. However you may supply memory from the
calling program.

On exit: the matrix V associated with the singular value decomposition

J ¼ USV T

of the estimated Jacobian matrix at the final point, stored by rows. This matrix may be useful for
statistical purposes, since it is the matrix of orthonormalized eigenvectors of JTJ .

tdv – Integer Default ¼ n

On entry: if memory is supplied then options:tdv must contain the last dimension of the array assigned
to options:tdv as declared in the function from which nag_opt_lsq_no_deriv (e04fcc) is called.

On exit: the trailing dimension used by options:v. If the Nag default memory allocation has been used
this value will be n.

Constraint: options:tdv � n.

grade – Integer

On exit: the grade of the Jacobian at the final point. nag_opt_lsq_no_deriv (e04fcc) estimates the
dimension of the subspace for which the Jacobian matrix can be used as a valid approximation to the
curvature (see Gill and Murray (1978)); this estimate is called the grade.

iter – Integer

On exit: the number of iterations which have been performed in nag_opt_lsq_no_deriv (e04fcc).

nf – Integer

On exit: the number of times the residuals have been evaluated (i.e., number of calls of lsqfun).

11.3 Description of Printed Output

The level of printed output can be controlled with the structure members options:list and
options:print level (see Section 11.2). If options:list ¼ Nag TRUE then the argument values to
nag_opt_lsq_no_deriv (e04fcc) are listed, whereas the printout of results is governed by the value of
options:print level. The default of options:print level ¼ Nag Soln Iter provides a single line of output
at each iteration and the final result. This section describes all of the possible levels of results printout
available from nag_opt_lsq_no_deriv (e04fcc).

When options:print level ¼ Nag Iter or Nag Soln Iter a single line of output is produced on
completion of each iteration, this gives the following values:

e04 – Minimizing or Maximizing a Function e04fcc

Mark 26 e04fcc.13

Itn the current iteration number k.

Nfun the cumulative number of calls to lsqfun.

Objective the value of the objective function, F x kð Þ� �
.

Norm g the Euclidean norm of the gradient of F x kð Þ� �
.

Norm x the Euclidean norm of x kð Þ.

Norm(x(k-1)-x(k)) the Euclidean norm of x k�1ð Þ � x kð Þ.

Step the step � kð Þ taken along the computed search direction p kð Þ.

When options:print level ¼ Nag Soln Iter Full more detailed results are given at each iteration.
Additional values output are:

Grade the grade of the Jacobian matrix. (See description of options:grade, Section 11.2

x the current point x kð Þ.

g the current estimate of the gradient of F x kð Þ� �
.

Singular values the singular values of the current approximation to the Jacobian matrix.

If options:print level ¼ Nag Soln, Nag Soln Iter or Nag Soln Iter Full the final result is printed out.
This consists of:

x the final point x�.

g the estimate of the gradient of F at the final point.

Sum of squares the value of F x�ð Þ, the sum of squares of the residuals at the final point.

If options:print level ¼ Nag NoPrint then printout will be suppressed; you can print the final solution
when nag_opt_lsq_no_deriv (e04fcc) returns to the calling program.

11.3.1 Output of results via a user-defined printing function

You may also specify your own print function for output of iteration results and the final solution by
use of the options:print fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

The rest of this section can be skipped if the default printing facilities provide the required
functionality.

When a user-defined function is assigned to options:print fun this will be called in preference to the
internal print function of nag_opt_lsq_no_deriv (e04fcc). Calls to the user-defined function are again
controlled by means of the options:print level member. Information is provided through st and comm,
the two structure arguments to options:print fun. If comm!it prt ¼ Nag TRUE then the results from
the last iteration of nag_opt_lsq_no_deriv (e04fcc) are in the following members of st:

m – Integer

The number of residuals.

n – Integer

The number of variables.

x – double *

Points to the st!n memory locations holding the current point x kð Þ.

e04fcc NAG Library Manual

e04fcc.14 Mark 26

fvec – double *

Points to the st!m memory locations holding the values of the residuals fi at the current point
x kð Þ.

fjac – double *

Points to st!m� st!tdj memory locations. st!fjac½ i � 1ð Þ � st!tdjþ j � 1ð Þ� contains the

value of
@fi
@xj

, for i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n, at the current point x kð Þ.

tdj – Integer

The trailing dimension for st!fjac½�.
step – double

The step � kð Þ taken along the search direction p kð Þ.

xk_norm – double

The Euclidean norm of x k�1ð Þ � x kð Þ.

g – double *

Points to the st!n memory locations holding the estimated gradient of F at the current point
x kð Þ.

grade – Integer

The grade of the Jacobian matrix.

s – double *

Points to the st!n memory locations holding the singular values of the current approximation to
the Jacobian.

iter – Integer

The number of iterations, k, performed by nag_opt_lsq_no_deriv (e04fcc).

nf – Integer

The cumulative number of calls made to lsqfun.

The relevant members of the structure comm are:

it_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with the result of the current iteration.

sol_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with the final result.

user – double *
iuser – Integer *
p – Pointer

Pointers for communication of user information. If used they must be allocated memory either
before entry to nag_opt_lsq_no_deriv (e04fcc) or during a call to lsqfun or options:print fun.
The type Pointer will be void * with a C compiler that defines void * and char * otherwise.

e04 – Minimizing or Maximizing a Function e04fcc

Mark 26 e04fcc.15 (last)

	e04fcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Gill and Murray (1978)

	5 Arguments
	m
	n
	lsqfun
	m
	n
	x
	fvec
	comm
	flag
	first
	nf
	user
	iuser
	p

	x
	fsumsq
	fvec
	fjac
	tdfjac
	options
	comm
	fail
	5.1 Description of Printed Output

	6 Error Indicators and Warnings
	NE_2_INT_ARG_LT
	NE_2_REAL_ARG_LT
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT_ARG_LT
	NE_INVALID_INT_RANGE_1
	NE_INVALID_REAL_RANGE_EF
	NE_INVALID_REAL_RANGE_FF
	NE_NOT_APPEND_FILE
	NE_NOT_CLOSE_FILE
	NE_OPT_NOT_INIT
	NE_SVD_FAIL
	NE_USER_STOP
	NE_WRITE_ERROR
	NW_COND_MIN
	NW_TOO_MANY_ITER

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Optional Parameters
	11.1 Optional Parameter Checklist and Default Values
	11.2 Description of the Optional Parameters
	list
	print_level
	outfile
	print_fun
	max_iter
	optim_tol
	linesearch_tol
	step_max
	s
	v
	tdv
	grade
	iter
	nf

	11.3 Description of Printed Output
	11.3.1 Output of results via a user-defined printing function
	m
	n
	x
	fvec
	fjac
	tdj
	step
	xk_norm
	g
	grade
	s
	iter
	nf
	it_prt
	sol_prt
	user
	iuser
	p

	NAG C Library Manual, Mark 26
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

