NAG Library Function Document nag_dgbtrf (f07bdc)

1 Purpose

nag_dgbtrf (f07bdc) computes the $L U$ factorization of a real m by n band matrix.

2 Specification

```
#include <nag.h>
#include <nagf07.h>
void nag_dgbtrf (Nag_OrderType order, Integer m, Integer n, Integer kl,
    Integer ku, double ab[], Integer pdab, Integer ipiv[], NagError *fail)
```


3 Description

nag_dgbtrf (f07bdc) forms the $L U$ factorization of a real m by n band matrix A using partial pivoting, with row interchanges. Usually $m=n$, and then, if A has k_{l} nonzero subdiagonals and k_{u} nonzero superdiagonals, the factorization has the form $A=P L U$, where P is a permutation matrix, L is a lower triangular matrix with unit diagonal elements and at most k_{l} nonzero elements in each column, and U is an upper triangular band matrix with $k_{l}+k_{u}$ superdiagonals.

Note that L is not a band matrix, but the nonzero elements of L can be stored in the same space as the subdiagonal elements of $A . U$ is a band matrix but with k_{l} additional superdiagonals compared with A. These additional superdiagonals are created by the row interchanges.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Arguments

1: order - Nag_OrderType
Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., rowmajor ordering or column-major ordering. C language defined storage is specified by order $=$ Nag_RowMajor. See Section 2.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.

Constraint: order $=$ Nag_RowMajor or Nag_ColMajor.

2: $\quad \mathbf{m}$ - Integer
Input
On entry: m, the number of rows of the matrix A.
Constraint: $\mathbf{m} \geq 0$.

3: $\quad \mathbf{n}$ - Integer
Input
On entry: n, the number of columns of the matrix A.
Constraint: $\mathbf{n} \geq 0$.

4: $\quad \mathbf{k l}$ - Integer
Input
On entry: k_{l}, the number of subdiagonals within the band of the matrix A.
Constraint: $\mathbf{k l} \geq 0$.
5: $\quad \mathbf{k u}$ - Integer
Input
On entry: k_{u}, the number of superdiagonals within the band of the matrix A.
Constraint: $\mathbf{k u} \geq 0$.
6: $\quad \mathbf{a b}[\mathrm{dim}]$ - double
Input/Output
Note: the dimension, dim, of the array $\mathbf{a b}$ must be at least
$\max (1, \mathbf{p d a b} \times \mathbf{n})$ when order $=$ Nag_ColMajor;
$\max (1, \mathbf{m} \times \mathbf{p d a b})$ when order $=$ Nag_RowMajor.
On entry: the m by n matrix A.
This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements $A_{i j}$, for row $i=1, \ldots, m$ and column $j=\max \left(1, i-k_{l}\right), \ldots, \min \left(n, i+k_{u}\right)$, depends on the order argument as follows:
if order $=$ Nag_ColMajor, $A_{i j}$ is stored as $\mathbf{a b}[(j-1) \times \mathbf{p d a b}+\mathbf{k} \mathbf{l}+\mathbf{k u}+i-j]$;
if order $=$ Nag_RowMajor, $A_{i j}$ is stored as $\mathbf{a b}[(i-1) \times \mathbf{p d a b}+\mathbf{k l}+j-i]$.
See Section 9 in nag_dgbsv (f07bac) for further details.
On exit: $\mathbf{a b}$ is overwritten by details of the factorization.
The elements, $u_{i j}$, of the upper triangular band factor U with $k_{l}+k_{u}$ super-diagonals, and the multipliers, $l_{i j}$, used to form the lower triangular factor L are stored. The elements $u_{i j}$, for $i=1, \ldots, m$ and $j=i, \ldots, \min \left(n, i+k_{l}+k_{u}\right), \quad$ and $\quad l_{i j}, \quad$ for $\quad i=1, \ldots, m \quad$ and $j=\max \left(1, i-k_{l}\right), \ldots, i$, are stored where $A_{i j}$ is stored on entry.

7: \quad pdab - Integer
Input
On entry: the stride separating row or column elements (depending on the value of order) of the matrix A in the array $\mathbf{a b}$.
Constraint: $\mathbf{p d a b} \geq 2 \times \mathbf{k l}+\mathbf{k u}+1$.
8: $\quad \operatorname{ipiv}[\boldsymbol{\operatorname { m i n }}(\mathbf{m}, \mathbf{n})]$ - Integer Output
On exit: the pivot indices that define the permutation matrix. At the i th step, if $\mathbf{i p i v}[i-1]>i$ then row i of the matrix A was interchanged with row $\operatorname{ipiv}[i-1]$, for $i=1,2, \ldots, \min (m, n)$. $\operatorname{ipiv}[i-1] \leq i$ indicates that, at the i th step, a row interchange was not required.

9: \quad fail - NagError *
Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further information.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_INT

On entry, $\mathbf{k l}=\langle$ value \rangle.
Constraint: $\mathbf{k l} \geq 0$.
On entry, ku $=\langle$ value \rangle.
Constraint: ku ≥ 0.
On entry, $\mathbf{m}=\langle$ value \rangle.
Constraint: $\mathbf{m} \geq 0$.
On entry, $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n} \geq 0$.
On entry, pdab $=\langle$ value \rangle.
Constraint: pdab >0.

NE_INT_3

On entry, $\mathbf{p d a b}=\langle$ value $\rangle, \mathbf{k l}=\langle$ value \rangle and $\mathbf{k u}=\langle$ value \rangle.
Constraint: pdab $\geq 2 \times \mathbf{k l}+\mathbf{k u}+1$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

NE_SINGULAR

Element $\langle v a l u e\rangle$ of the diagonal is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.

7 Accuracy

The computed factors L and U are the exact factors of a perturbed matrix $A+E$, where

$$
|E| \leq c(k) \epsilon P|L||U|
$$

$c(k)$ is a modest linear function of $k=k_{l}+k_{u}+1$, and ϵ is the machine precision. This assumes $k \ll \min (m, n)$.

8 Parallelism and Performance

nag_dgbtrf (f07bdc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_dgbtrf (f07bdc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Notefor your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations varies between approximately $2 n k_{l}\left(k_{u}+1\right)$ and $2 n k_{l}\left(k_{l}+k_{u}+1\right)$, depending on the interchanges, assuming $m=n \gg k_{l}$ and $n \gg k_{u}$.

A call to nag_dgbtrf (f07bdc) may be followed by calls to the functions:
nag_dgbtrs (f07bec) to solve $A X=B$ or $A^{\mathrm{T}} X=B$;
nag_dgbcon (f07bgc) to estimate the condition number of A.
The complex analogue of this function is nag_zgbtrf (f07brc).

10 Example

This example computes the $L U$ factorization of the matrix A, where

$$
A=\left(\begin{array}{rrrr}
-0.23 & 2.54 & -3.66 & 0.00 \\
-6.98 & 2.46 & -2.73 & -2.13 \\
0.00 & 2.56 & 2.46 & 4.07 \\
0.00 & 0.00 & -4.78 & -3.82
\end{array}\right)
$$

Here A is treated as a band matrix with one subdiagonal and two superdiagonals.

10.1 Program Text

```
/* nag_dgbtrf (f07bdc) Example Program.
    *
    * NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>
int main(void)
{
    /* Scalars */
    Integer i, ipiv_len, j, kl, ku, m, n, pdab;
    Integer exit_status = 0;
    NagError fail;
    Nag_OrderType order;
    /* Arrays */
    double *ab = 0;
    Integer *ipiv = 0;
#ifdef NAG_LOAD_FP
    /* The following line is needed to force the Microsoft linker
        to load floating point support */
    float force_loading_of_ms_float_support = 0;
#endif /* NAG_LOAD_FP */
#ifdef NAG_COLUMN_MAJOR
#define AB(I, J) ab[(J-1)*pdab + kl + ku + I - J]
    order = Nag_ColMajor;
#else
#define AB(I, J) ab[(I-1)*pdab + kl + J - I]
    order = Nag_RowMajor;
#endif
    INIT_FAIL(fail);
    printf("nag_dgbtrf (f07bdc) Example Program Results\n\n");
```

```
    /* Skip heading in data file */
#ifdef _WIN32
    scanf_s("%*[^\n] ");
#else
    scanf("%*[^\n] ");
#endif
#ifdef _WIN32
    scanf_s("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &m,
                    &n, &kl, &ku);
#else
    scanf("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &m,
                &n, &kl, &ku);
#endif
    ipiv_len = MIN(m, n);
    pdab = 2 * kl + ku + 1;
    /* Allocate memory */
    if (!(ab = NAG_ALLOC((2 * kl + ku + 1) * MAX(m, n), double)) ||
        !(ipiv = NAG_ALLOC(ipiv_len, Integer)))
    {
        printf("Allocation failure\n");
        exit_status = -1;
        goto END;
    }
    /* Read A from data file */
    for (i = 1; i <= m; ++i) {
        for (j = MAX(i - kl, 1); j <= MIN(i + ku, n); ++j)
#ifdef _WIN32
            scanf_s("%lf", &AB(i, j));
#else
            scanf("%lf", &AB(i, j));
#endif
    }
#ifdef _WIN32
    scanf_s("%*[^\n] ");
#else
    scanf("%*[^\n] ");
#endif
    /* Factorize A */
    /* nag_dgbtrf (f07bdc).
        * LU factorization of real m by n band matrix
        */
    nag_dgbtrf(order, m, n, kl, ku, ab, pdab, ipiv, &fail);
    if (fail.code != NE_NOERROR) {
        printf("Error from nag_dgbtrf (f07bdc).\n%s\n", fail.message);
        exit_status = 1;
        goto END;
    }
    /* Print details of factorization */
    /* nag_band_real_mat_print (x04cec).
        * Print real packed banded matrix (easy-to-use)
        */
    fflush(stdout);
    nag_band_real_mat_print(order, m, n, kl, kl + ku, ab, pdab,
                                    "Details of factorization", 0, &fail);
    if (fail.code != NE_NOERROR) {
        printf("Error from nag_band_real_mat_print (x04cec).\n%s\n",
            fail.message);
        exit_status = 1;
        goto END;
    }
    /* Print pivot indices */
    printf("\nipiv\n");
    for (i = 1; i <= MIN(m, n); ++i)
        printf("%10" NAG_IFMT "%S", ipiv[i - 1], i % 7 == 0 ? "\n" : " ");
    printf("\n");
```

```
END:
    NAG_FREE(ab);
    NAG_FREE(ipiv);
    return exit_status;
}
```


10.2 Program Data

```
nag_dgbtrf (f07bdc) Example Program Data
```


10.3 Program Results

