NAG Library Function Document
 nag_zsteqr (f08jsc)

1 Purpose

nag_zsteqr (f08jsc) computes all the eigenvalues and, optionally, all the eigenvectors of a complex Hermitian matrix which has been reduced to tridiagonal form.

2 Specification

```
#include <nag.h>
#include <nagf08.h>
void nag_zsteqr (Nag_OrderType order, Nag_ComputeZType compz, Integer n,
    double d[], double e[], Complex z[], Integer pdz, NagError *fail)
```


3 Description

nag_zsteqr (f08jsc) computes all the eigenvalues and, optionally, all the eigenvectors of a real symmetric tridiagonal matrix T. In other words, it can compute the spectral factorization of T as

$$
T=Z \Lambda Z^{\mathrm{T}}
$$

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ_{i}, and Z is the orthogonal matrix whose columns are the eigenvectors z_{i}. Thus

$$
T z_{i}=\lambda_{i} z_{i}, \quad i=1,2, \ldots, n
$$

The function stores the real orthogonal matrix Z in a complex array, so that it may also be used to compute all the eigenvalues and eigenvectors of a complex Hermitian matrix A which has been reduced to tridiagonal form T :

$$
\begin{aligned}
A & =Q T Q^{\mathrm{H}}, \text { where } Q \text { is unitary } \\
& =(Q Z) \Lambda(Q Z)^{\mathrm{H}}
\end{aligned}
$$

In this case, the matrix Q must be formed explicitly and passed to nag_zsteqr (f08jsc), which must be called with $\mathbf{c o m p z}=$ Nag_UpdateZ. The functions which must be called to perform the reduction to tridiagonal form and form Q are:

full matrix	nag_zhetrd (f08fsc) and nag_zungtr (f08ftc)
full matrix, packed storage	nag_zhptrd (f08gsc) and nag_zupgtr (f08gtc)
band matrix	nag_zhbtrd (f08hsc) with vect = Nag_FormQ.

nag_zsteqr (f08jsc) uses the implicitly shifted $Q R$ algorithm, switching between the $Q R$ and $Q L$ variants in order to handle graded matrices effectively (see Greenbaum and Dongarra (1980)). The eigenvectors are normalized so that $\left\|z_{i}\right\|_{2}=1$, but are determined only to within a complex factor of absolute value 1 .

If only the eigenvalues of T are required, it is more efficient to call nag_dsterf (f08jfc) instead. If T is positive definite, small eigenvalues can be computed more accurately by nag_zpteqr (f08juc).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Greenbaum A and Dongarra J J (1980) Experiments with QR/QL methods for the symmetric triangular eigenproblem LAPACK Working Note No. 17 (Technical Report CS-89-92) University of Tennessee, Knoxville http://www.netlib.org/lapack/lawnspdf/lawn17.pdf
Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia

5 Arguments

1: order - Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., rowmajor ordering or column-major ordering. C language defined storage is specified by order $=$ Nag_RowMajor. See Section 2.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.

Constraint: order $=$ Nag_RowMajor or Nag_ColMajor.

2: compz - Nag_ComputeZType
Input
On entry: indicates whether the eigenvectors are to be computed.
$\boldsymbol{\operatorname { c o m p z }}=$ Nag_NotZ
Only the eigenvalues are computed (and the array \mathbf{z} is not referenced).
$\mathbf{c o m p z}=$ Nag_UpdateZ
The eigenvalues and eigenvectors of A are computed (and the array \mathbf{z} must contain the matrix Q on entry).
$\boldsymbol{\operatorname { c o m p z }}=$ Nag_InitZ
The eigenvalues and eigenvectors of T are computed (and the array \mathbf{z} is initialized by the function).

Constraint: $\mathbf{c o m p z}=$ Nag_NotZ, Nag_UpdateZ or Nag_InitZ.
3: $\quad \mathbf{n}$ - Integer
Input
On entry: n, the order of the matrix T.
Constraint: $\mathbf{n} \geq 0$.

4: $\quad \mathbf{d}[\operatorname{dim}]$ - double
Input/Output
Note: the dimension, dim, of the array \mathbf{d} must be at least $\max (1, \mathbf{n})$.
On entry: the diagonal elements of the tridiagonal matrix T.
On exit: the n eigenvalues in ascending order, unless fail.code $=$ NE_CONVERGENCE (in which case see Section 6).

5: $\mathbf{e}[$ dim $]$ - double Input/Output
Note: the dimension, dim, of the array \mathbf{e} must be at least $\max (1, \mathbf{n}-1)$.
On entry: the off-diagonal elements of the tridiagonal matrix T.
On exit: e is overwritten.
6: $\quad \mathbf{z}[\operatorname{dim}]-$ Complex
Input/Output
Note: the dimension, dim, of the array \mathbf{z} must be at least
$\max (1, \mathbf{p d z} \times \mathbf{n})$ when $\mathbf{c o m p z}=$ Nag_UpdateZ or Nag_InitZ;
1 when compz $=$ Nag_NotZ.

The (i, j) th element of the matrix Z is stored in

$$
\begin{aligned}
& \mathbf{z}[(j-1) \times \mathbf{p d z}+i-1] \text { when order }=\text { Nag_ColMajor; } \\
& \mathbf{z}[(i-1) \times \mathbf{p d z}+j-1] \text { when } \mathbf{o r d e r}=\text { Nag_RowMajor. }
\end{aligned}
$$

On entry: if compz $=$ Nag_UpdateZ, \mathbf{z} must contain the unitary matrix Q from the reduction to tridiagonal form.

If $\operatorname{compz}=$ Nag_InitZ, \mathbf{z} need not be set.
On exit: if compz = Nag_UpdateZ or Nag_InitZ, the n required orthonormal eigenvectors stored as columns of Z; the i th column corresponds to the i th eigenvalue, where $i=1,2, \ldots, n$, unless fail.code $=$ NE_CONVERGENCE .

If $\mathbf{c o m p z}=$ Nag_NotZ, \mathbf{z} is not referenced.
7: pdz - Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array \mathbf{z}.
Constraints:
if $\mathbf{c o m p z}=$ Nag_UpdateZ or Nag_InitZ, $\mathbf{p d z} \geq \max (1, \mathbf{n})$;
if $\mathbf{c o m p z}=$ Nag_NotZ, $\mathbf{p d z} \geq 1$.
8: \quad fail - NagError *
Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further information.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_CONVERGENCE

The algorithm has failed to find all the eigenvalues after a total of $30 \times \mathbf{n}$ iterations. In this case, d and e contain on exit the diagonal and off-diagonal elements, respectively, of a tridiagonal matrix unitarily similar to T. 〈value \rangle off-diagonal elements have not converged to zero.

NE_ENUM_INT_2

On entry, compz $=\langle$ value $\rangle, \mathbf{p d z}=\langle$ value \rangle and $\mathbf{n}=\langle$ value \rangle.
Constraint: if compz $=$ Nag_UpdateZ or Nag_InitZ, $\mathbf{p d z} \geq \max (1, \mathbf{n})$; if $\mathbf{c o m p z}=$ Nag_NotZ, $\mathbf{p d z} \geq 1$.

NE_INT

On entry, $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n} \geq 0$.
On entry, pdz $=\langle$ value \rangle.
Constraint: pdz >0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix $(T+E)$, where

$$
\|E\|_{2}=O(\epsilon)\|T\|_{2}
$$

and ϵ is the machine precision.
If λ_{i} is an exact eigenvalue and $\tilde{\lambda}_{i}$ is the corresponding computed value, then

$$
\left|\tilde{\lambda}_{i}-\lambda_{i}\right| \leq c(n) \epsilon\|T\|_{2}
$$

where $c(n)$ is a modestly increasing function of n.
If z_{i} is the corresponding exact eigenvector, and \tilde{z}_{i} is the corresponding computed eigenvector, then the angle $\theta\left(\tilde{z}_{i}, z_{i}\right)$ between them is bounded as follows:

$$
\theta\left(\tilde{z}_{i}, z_{i}\right) \leq \frac{c(n) \epsilon\|T\|_{2}}{\min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right|}
$$

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the other eigenvalues.

8 Parallelism and Performance

nag_zsteqr (f08jsc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_zsteqr (f08jsc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Notefor your implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is typically about $24 n^{2}$ if $\mathbf{c o m p z}=$ Nag_NotZ and about $14 n^{3}$ if compz $=$ Nag_UpdateZ or Nag_InitZ, but depends on how rapidly the algorithm converges. When compz $=$ Nag_NotZ, the operations are all performed in scalar mode; the additional operations to compute the eigenvectors when $\mathbf{c o m p z}=$ Nag_UpdateZ or Nag_InitZ can be vectorized and on some machines may be performed much faster.

The real analogue of this function is nag_dsteqr (f08jec).

10 Example

See Section 10 in nag_zungtr (f08ftc), nag_zupgtr (f08gtc) or nag_zhbtrd (f08hsc), which illustrate the use of this function to compute the eigenvalues and eigenvectors of a full or band Hermitian matrix.

