NAG Library Function Document

 nag_rand_field_2d_user_setup (g05zqc)
1 Purpose

nag_rand_field_2d_user_setup (g05zqc) performs the setup required in order to simulate stationary Gaussian $\overline{\text { random }} \overline{\text { fields }} \overline{\bar{i}}$ in two dimensions, for a user-defined variogram, using the circulant embedding method. Specifically, the eigenvalues of the extended covariance matrix (or embedding matrix) are calculated, and their square roots output, for use by nag_rand_field_2d_generate (g05zsc), which simulates the random field.

2 Specification

```
#include <nag.h>
#include <nagg05.h>
void nag_rand_field_2d_user_setup (const Integer ns[], double xmin,
    double xmax, double ymin, double ymax, const Integer maxm[], double var,
    void (*cov2)(double x, double y, double *gamma, Nag_Comm *comm),
    Nag_Parity parity, Nag_EmbedPad pad, Nag_EmbedScale corr, double lam[],
    double xx[], double yy[], Integer m[], Integer *approx, double *rho,
    Integer *icount, double eig[], Nag_Comm *comm, NagError *fail)
```


3 Description

A two-dimensional random field $Z(\mathbf{x})$ in \mathbb{R}^{2} is a function which is random at every point $\mathbf{x} \in \mathbb{R}^{2}$, so $Z(\mathbf{x})$ is a random variable for each \mathbf{x}. The random field has a mean function $\mu(\mathbf{x})=\mathbb{E}[Z(\mathbf{x})]$ and a symmetric positive semidefinite covariance function $C(\mathbf{x}, \mathbf{y})=\mathbb{E}[(Z(\mathbf{x})-\mu(\mathbf{x}))(Z(\mathbf{y})-\mu(\mathbf{y}))]$. $Z(\mathbf{x})$ is a Gaussian random field if for any choice of $n \in \mathbb{N}$ and $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{2}$, the random vector $\left[Z\left(\mathbf{x}_{1}\right), \ldots, Z\left(\mathbf{x}_{n}\right)\right]^{\mathrm{T}}$ follows a multivariate Normal distribution, which would have a mean vector $\tilde{\mu}$ with entries $\tilde{\mu}_{i}=\mu\left(\mathbf{x}_{i}\right)$ and a covariance matrix \tilde{C} with entries $\tilde{C}_{i j}=C\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$. A Gaussian random field $Z(\mathbf{x})$ is stationary if $\mu(\mathbf{x})$ is constant for all $\mathbf{x} \in \mathbb{R}^{2}$ and $C(\mathbf{x}, \mathbf{y})=C(\mathbf{x}+\mathbf{a}, \mathbf{y}+\mathbf{a})$ for all $\mathbf{x}, \mathbf{y}, \mathbf{a} \in \mathbb{R}^{2}$ and hence we can express the covariance function $C(\mathbf{x}, \mathbf{y})$ as a function γ of one variable: $C(\mathbf{x}, \mathbf{y})=\gamma(\mathbf{x}-\mathbf{y}) . \gamma$ is known as a variogram (or more correctly, a semivariogram) and includes the multiplicative factor σ^{2} representing the variance such that $\gamma(0)=\sigma^{2}$.
The functions nag_rand_field_2d_user_setup (g05zqc) and nag_rand_field_2d_generate (g05zsc) are used to simulate a two- \bar{d} imensional stationary Gaussian random field, with mean function zero and variogram $\gamma(\mathbf{x})$, over a domain $\left[x_{\text {min }}, x_{\max }\right] \times\left[y_{\min }, y_{\max }\right]$, using an equally spaced set of $N_{1} \times N_{2}$ points; N_{1} points in the x-direction and N_{2} points in the y-direction. The problem reduces to sampling a Normal random vector \mathbf{X} of size $N_{1} \times N_{2}$, with mean vector zero and a symmetric covariance matrix A, which is an N_{2} by N_{2} block Toeplitz matrix with Toeplitz blocks of size N_{1} by N_{1}. Since A is in general expensive to factorize, a technique known as the circulant embedding method is used. A is embedded into a larger, symmetric matrix B, which is an M_{2} by M_{2} block circulant matrix with circulant blocks of size M_{1} by M_{1}, where $M_{1} \geq 2\left(N_{1}-1\right)$ and $M_{2} \geq 2\left(N_{2}-1\right)$. B can now be factorized as $B=W \Lambda W^{*}=R^{*} R$, where W is the two-dimensional Fourier matrix (W^{*} is the complex conjugate of W), Λ is the diagonal matrix containing the eigenvalues of B and $R=\Lambda^{\frac{1}{2}} W^{*} . B$ is known as the embedding matrix. The eigenvalues can be calculated by performing a discrete Fourier transform of the first row (or column) of B and multiplying by $M_{1} \times M_{2}$, and so only the first row (or column) of B is needed - the whole matrix does not need to be formed.
The symmetry of A as a block matrix, and the symmetry of each block of A, depends on whether the variogram γ is even or not. γ is even in its first coordinate if $\gamma\left(\left[-x_{1}, x_{2}\right]^{\mathrm{T}}\right)=\gamma\left(\left[x_{1}, x_{2}\right]^{\mathrm{T}}\right)$, even in its second coordinate if $\gamma\left(\left[x_{1},-x_{2}\right]^{\mathrm{T}}\right)=\gamma\left(\left[x_{1}, x_{2}\right]^{\mathrm{T}}\right)$, and even if it is even in both coordinates (in two
dimensions it is impossible for γ to be even in one coordinate and uneven in the other). If γ is even then A is a symmetric block matrix and has symmetric blocks; if γ is uneven then A is not a symmetric block matrix and has non-symmetric blocks. In the uneven case, M_{1} and M_{2} are set to be odd in order to guarantee symmetry in B.
As long as all of the values of Λ are non-negative (i.e., B is positive semidefinite), B is a covariance matrix for a random vector \mathbf{Y} which has M_{2} blocks of size M_{1}. Two samples of \mathbf{Y} can now be simulated from the real and imaginary parts of $R^{*}(\mathbf{U}+i \mathbf{V})$, where \mathbf{U} and \mathbf{V} have elements from the standard Normal distribution. Since $R^{*}(\mathbf{U}+i \mathbf{V})=W \Lambda^{\frac{1}{2}}(\mathbf{U}+i \mathbf{V})$, this calculation can be done using a discrete Fourier transform of the vector $\Lambda^{\frac{1}{2}}(\mathbf{U}+i \mathbf{V})$. Two samples of the random vector \mathbf{X} can now be recovered by taking the first N_{1} elements of the first N_{2} blocks of each sample of \mathbf{Y} - because the original covariance matrix A is embedded in B, \mathbf{X} will have the correct distribution.
If B is not positive semidefinite, larger embedding matrices B can be tried; however if the size of the matrix would have to be larger than maxm, an approximation procedure is used. We write $\Lambda=\Lambda_{+}+\Lambda_{-}$, where Λ_{+}and Λ_{-}contain the non-negative and negative eigenvalues of B respectively. Then B is replaced by ρB_{+}where $B_{+}=W \Lambda_{+} W^{*}$ and $\rho \in(0,1]$ is a scaling factor. The error ϵ in approximating the distribution of the random field is given by

$$
\epsilon=\sqrt{\frac{(1-\rho)^{2} \operatorname{trace} \Lambda+\rho^{2} \operatorname{trace} \Lambda_{-}}{M}}
$$

Three choices for ρ are available, and are determined by the input argument corr:
setting corr $=$ Nag_EmbedScaleTraces sets

$$
\rho=\frac{\operatorname{trace} \Lambda}{\operatorname{trace} \Lambda_{+}}
$$

setting corr $=$ Nag_EmbedScaleSqrtTraces sets

$$
\rho=\sqrt{\frac{\operatorname{trace} \Lambda}{\operatorname{trace} \Lambda_{+}}}
$$

setting corr $=$ Nag_EmbedScaleOne sets $\rho=1$.
nag_rand_field_2d_user_setup (g05zqc) finds a suitable positive semidefinite embedding matrix B and outputs its sizes in the vector \mathbf{m} and the square roots of its eigenvalues in lam. If approximation is used, information regarding the accuracy of the approximation is output. Note that only the first row (or column) of B is actually formed and stored.

4 References

Dietrich C R and Newsam G N (1997) Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix SIAM J. Sci. Comput. 18 1088-1107
Schlather M (1999) Introduction to positive definite functions and to unconditional simulation of random fields Technical Report ST 99-10 Lancaster University

Wood A T A and Chan G (1994) Simulation of stationary Gaussian processes in $[0,1]^{d}$ Journal of Computational and Graphical Statistics 3(4) 409-432

5 Arguments

1: $\quad \mathbf{n s}[\mathbf{2}]$ - const Integer
Input
On entry: the number of sample points to use in each direction, with ns[0] sample points in the x-direction, N_{1} and $\mathbf{n s}[1]$ sample points in the y-direction, N_{2}. The total number of sample points on the grid is therefore $\mathbf{n s}[0] \times \mathbf{n s}[1]$.

Constraints:

$$
\begin{aligned}
& \mathbf{n s}[0] \geq 1 \\
& \mathbf{n s}[1] \geq 1
\end{aligned}
$$

2: \quad xmin - double
Input
On entry: the lower bound for the x-coordinate, for the region in which the random field is to be simulated.

Constraint: xmin $<$ xmax.
xmax - double Input
On entry: the upper bound for the x-coordinate, for the region in which the random field is to be simulated.

Constraint: xmin $<$ xmax.
4: ymin - double
On entry: the lower bound for the y-coordinate, for the region in which the random field is to be simulated.

Constraint: ymin $<$ ymax.
5: \quad ymax - double
On entry: the upper bound for the y-coordinate, for the region in which the random field is to be simulated.

Constraint: ymin $<$ ymax.
6: $\quad \operatorname{maxm}[2]-$ const Integer
Input
On entry: determines the maximum size of the circulant matrix to use - a maximum of maxm [0] elements in the x-direction, and a maximum of $\operatorname{maxm}[1]$ elements in the y-direction. The maximum size of the circulant matrix is thus $\operatorname{maxm}[0] \times \operatorname{maxm}[1]$.

Constraints:

if parity $=$ Nag_Even, $\boldsymbol{\operatorname { m a x }}[i] \geq 2^{k}$, where k is the smallest integer satisfying
$2^{k} \geq 2(\mathbf{n s}[i]-1)$, for $i=0,1$;
if parity $=$ Nag_Odd, $\boldsymbol{\operatorname { m a x m }}[i] \geq 3^{k}$, where k is the smallest integer satisfying
$3^{k} \geq 2(\mathbf{n s}[i]-1)$, for $i=0,1$.

7: \quad var - double
On entry: the multiplicative factor σ^{2} of the variogram $\gamma(\mathbf{x})$.
Constraint: var ≥ 0.0.
cov2 - function, supplied by the user
External Function
$\operatorname{cov} 2$ must evaluate the variogram $\gamma(\mathbf{x})$ for all \mathbf{x} if parity $=$ Nag_Odd, and for all \mathbf{x} with nonnegative entries if parity $=$ Nag_Even. The value returned in gamma is multiplied internally by var.

```
The specification of \(\operatorname{cov} 2\) is:
void cov2 (double x, double y, double *gamma, Nag_Comm *comm)
1: \(\quad \mathbf{x}\) - double Input
    On entry: the coordinate \(x\) at which the variogram \(\gamma(\mathbf{x})\) is to be evaluated.
```

2: $\quad \mathbf{y}-$ double
Input
On entry: the coordinate y at which the variogram $\gamma(\mathbf{x})$ is to be evaluated.
gamma - double *
Output
On exit: the value of the variogram $\gamma(\mathbf{x})$.
comm - Nag_Comm *
Pointer to structure of type Nag_Comm; the following members are relevant to cov2.
user - double *
iuser - Integer *
p - Pointer
The type Pointer will be void *. Before calling nag_rand_field_2d_user_setup (g05zqc) you may allocate memory and initialize these pointers with various quantities for use by cov2 when called from nag_rand_field_2d_user_setup (g05zqc) (see Section 2.3.1.1 in How to Use the NAG Library and its Documentation).
parity - Nag_Parity
On entry: indicates whether the covariance function supplied is even or uneven.
parity $=$ Nag_Odd
The covariance function is uneven.
parity $=$ Nag_Even
The covariance function is even.
Constraint: parity = Nag_Odd or Nag_Even.
pad - Nag_EmbedPad
Input
On entry: determines whether the embedding matrix is padded with zeros, or padded with values of the variogram. The choice of padding may affect how big the embedding matrix must be in order to be positive semidefinite.
$\mathbf{p a d}=$ Nag_EmbedPadZeros
The embedding matrix is padded with zeros.
$\boldsymbol{p a d}=$ Nag $_{\text {EmbedPadValues }}$
The embedding matrix is padded with values of the variogram.
Suggested value: pad = Nag_EmbedPadValues.
Constraint: pad = Nag_EmbedPadZeros or Nag_EmbedPadValues.
11:
corr - Nag_EmbedScale
Input
On entry: determines which approximation to implement if required, as described in Section 3.
Suggested value: corr $=$ Nag_EmbedScaleTraces.
Constraint: corr $=$ Nag_EmbedScaleTraces, Nag_EmbedScaleSqrtTraces or Nag_EmbedScaleOne.
12: $\quad \boldsymbol{\operatorname { l a m }}[\boldsymbol{\operatorname { m a x m }}[0] \times \boldsymbol{\operatorname { m a x m }}[1]]-$ double
Output
On exit: contains the square roots of the eigenvalues of the embedding matrix.
13: $\quad \mathbf{x x}[\mathbf{n s}[0]]$ - double
Output
On exit: the points of the x-coordinates at which values of the random field will be output.

14: $\quad \mathbf{y y}[\mathbf{n s}[1]]$ - double
Output
On exit: the points of the y-coordinates at which values of the random field will be output.

15: $\mathbf{m}[\mathbf{2}]$ - Integer
Output
On exit: $\mathbf{m}[0]$ contains M_{1}, the size of the circulant blocks and $\mathbf{m}[1]$ contains M_{2}, the number of blocks, resulting in a final square matrix of size $M_{1} \times M_{2}$.

16: approx - Integer *
Output
On exit: indicates whether approximation was used.
$\operatorname{approx}=0$
No approximation was used.
$\boldsymbol{\operatorname { a p p r o x }}=1$
Approximation was used.
17: rho - double *
Output
On exit: indicates the scaling of the covariance matrix. rho $=1.0$ unless approximation was used with corr $=$ Nag_EmbedScaleTraces or Nag_EmbedScaleSqrtTraces.

18: icount - Integer *
Output
On exit: indicates the number of negative eigenvalues in the embedding matrix which have had to be set to zero.

19: $\quad \mathbf{e i g}[\mathbf{3}]$ - double
Output
On exit: indicates information about the negative eigenvalues in the embedding matrix which have had to be set to zero. eig[0] contains the smallest eigenvalue, eig[1] contains the sum of the squares of the negative eigenvalues, and eig[2] contains the sum of the absolute values of the negative eigenvalues.

20: comm - Nag_Comm *
The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

21: fail - NagError *
Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further information.

NE_BAD_PARAM

On entry, argument $\langle v a l u e\rangle$ had an illegal value.

NE_INT_ARRAY

On entry, $\boldsymbol{\operatorname { m a x m }}=[\langle$ value \rangle,\langle value $\rangle]$.
Constraint: the minima for maxm are $[\langle$ value \rangle,\langle value $\rangle]$.
Where, if parity $=$ Nag_Even, the minimum calculated value of $\operatorname{maxm}[i-1]$ is given by 2^{k},
where k is the smallest integer satisfying $2^{k} \geq 2(\mathbf{n s}[i-1]-1)$, and if parity $=$ Nag_Odd, the minimum calculated value of $\operatorname{maxm}[i-1]$ is given by 3^{k}, where k is the smallest integer satisfying $3^{k} \geq 2(\mathbf{n s}[i-1]-1)$, for $i=1,2$.
On entry, ns $=[\langle$ value \rangle,\langle value $\rangle]$.
Constraint: $\mathbf{n s}[0] \geq 1, \mathbf{n s}[1] \geq 1$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

NE_REAL

On entry, var $=\langle$ value \rangle.
Constraint: var ≥ 0.0.

NE_REAL_2

On entry, $\mathbf{x m i n}=\langle$ value \rangle and $\mathbf{x m a x}=\langle$ value \rangle.
Constraint: xmin $<$ xmax.
On entry, ymin $=\langle$ value \rangle and $\mathbf{y m a x}=\langle$ value \rangle.
Constraint: ymin $<$ ymax.

7 Accuracy

If on exit approx $=1$, see the comments in Section 3 regarding the quality of approximation; increase the values in maxm to attempt to avoid approximation.

8 Parallelism and Performance

nag_rand_field_2d_user_setup (g05zqc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_rand_field_2d_user_setup (g05zqc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Notefor your implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example calls nag_rand_field_2d_user_setup (g05zqc) to calculate the eigenvalues of the embedding matrix for 25 sample points on a 5 by 5 grid of a two-dimensional random field characterized by the symmetric stable variogram:

$$
\gamma(\mathbf{x})=\sigma^{2} \exp \left(-\left(x^{\prime}\right)^{\nu}\right)
$$

where $x^{\prime}=\left|\frac{x}{\ell_{1}}+\frac{y}{\ell_{2}}\right|$, and ℓ_{1}, ℓ_{2} and ν are parameters.
It should be noted that the symmetric stable variogram is one of the pre-defined variograms available in nag_rand_field_2d_predef_setup (g05zrc). It is used here purely for illustrative purposes.

10.1 Program Text

```
/* nag_rand_field_2d_user_setup (g05zqc) Example Program.
    *
    * NAGPRODCODE Version.
    *
    * Copyright 2016 Numerical Algorithms Group.
    *
    * Mark 26, 2016.
    */
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>
#ifdef __cplusplus
extern "C"
{
#endif
    static void NAG_CALL cov2(double t1, double t2, double *gamma,
                                    Nag_Comm *comm);
#ifdef __cplusplus
}
#endif
static void display_results(Integer approx, Integer *m, double rho,
                                    double *eig, Integer icount, double *lam);
static void read_input_data(Nag_NormType *norm, double *l1, double *l2,
                                    double *nu, double *var, double *xmin,
                                    double *xmax, double *ymin, double *ymax,
                                    Integer *ns, Integer *maxm, Nag_EmbedScale *corr,
                                    Nag_EmbedPad *pad);
int main(void)
{
    /* Scalars */
    Integer exit_status = 0;
    double l1, l2, nu, rho, var, xmax, xmin, ymax, ymin;
    Integer approx, icount;
    /* Arrays */
    double eig[3];
    double *lam = 0, *xx = 0, *yy = 0;
    Integer m[2], maxm[2], ns[2];
    /* Nag types */
    Nag_NormType norm;
    Nag_EmbedPad pad;
    Nag_EmbedScale corr;
    Nag_Parity even = Nag_Even;
    Nag_Comm comm;
    NagError fail;
    INIT_FAIL(fail);
    printf("nag_rand_field_2d_user_setup (g05zqc) Example Program Results\n\n");
    /* Get problem specifications from data file */
    read_input_data(&norm, &ll, &l2, &nu, &var, &xmin, &xmax, &ymin, &ymax, ns,
            maxm, &corr, &pad);
    if (!(lam = NAG_ALLOC(maxm[0] * maxm[1], double)) ||
        !(xx = NAG_ALLOC(ns[0], double)) ||
        !(yY = NAG_ALLOC(ns[1], double)) ||
        !(comm.iuser = NAG_ALLOC(1, Integer)) ||
```

```
            !(comm.user = NAG_ALLOC(3, double)))
    {
        printf("Allocation failure\n");
        exit_status = -1;
        goto END;
    }
    /* Put covariance parameters in communication arrays */
    comm.iuser[0] = (Integer) norm;
    comm.user[0] = 11;
    comm.user[1] = 12;
    comm.user[2] = nu;
    /* Get square roots of the eigenvalues of the embedding matrix. These are
    * obtained from the setup for simulating two-dimensional random fields,
    * with a user-defined variogram, by the circulant embedding method using
    * nag_rand_field_2d_user_setup (g05zqc).
    */
    nag_rand_field_2d_user_setup(ns, xmin, xmax, ymin, ymax, maxm, var,
                                    cov2, even, pad, corr, lam, xx, yy, m,
                            &approx, &rho, &icount, eig, &comm, &fail);
    if (fail.code != NE_NOERROR) {
        printf("Error from nag_rand_field_2d_user_setup (g05zqc).\n%s\n",
            fail.message);
        exit_status = 1;
        goto END;
    }
    /* Output results */
    display_results(approx, m, rho, eig, icount, lam);
END:
    NAG_FREE(lam);
    NAG_FREE(xx);
    NAG_FREE(yy);
    NAG_FREE(comm.iuser);
    NAG_FREE(comm.user);
    return exit_status;
}
void read_input_data(Nag_NormType *norm, double *l1, double *l2, double *nu,
                                    double *var, double *xmin, double *xmax, double *ymin,
                                    double *ymax, Integer *ns, Integer *maxm,
                                    Nag_EmbedScale *corr, Nag_EmbedPad *pad)
{
    char nag_enum_arg[40];
    /* Read in norm type by name and convert to value using
    * nag_enum_name_to_value (x04nac).
    */
#ifdef _WIN32
    scanf_s("%*[^\n] %39s%*[^\n]", nag_enum_arg,
                            (unsigned)_countof(nag_enum_arg));
#else
    scanf("%*[^\n] %39s%*[^\n]", nag_enum_arg);
#endif
    *norm = (Nag_NormType) nag_enum_name_to_value(nag_enum_arg);
    /* read in l1, l2 and nu for cov function */
#ifdef _WIN32
    scanf_s("%lf %lf %lf%*[^\n]", l1, l2, nu);
#else
    scanf("%lf %lf %lf%*[`\n]", l1, l2, nu);
#endif
    /* Read in variance of random field */
#ifdef _WIN32
    scanf_s("%lf%*[^\n]", var);
#else
    scanf("%lf%*[^\n]", var);
#endif
    /* Read in domain endpoints */
#ifdef _WIN32
    scanf_s("%lf %lf%*[^\n]", xmin, xmax);
#else
    scanf("%lf %lf%*[^\n]", xmin, xmax);
#endif
```

```
#ifdef _WIN32
    scanf_s("%lf %lf%*[^\n]", ymin, ymax);
#else
    scanf("%lf %lf%*[^\n]", ymin, ymax);
#endif
    /* Read in number of sample points in each direction */
#ifdef _WIN32
    scanf_s("%" NAG_IFMT " %" NAG_IFMT "%*[^\n]", &ns[0], &ns[1]);
#else
    scanf("%" NAG_IFMT " %" NAG_IFMT "%*[^\n]", &ns[0], &ns[1]);
#endif
    /* Read in maximum size of embedding matrix */
#ifdef _WIN32
    scanf_s("%" NAG_IFMT " %" NAG_IFMT "%*[^\n]", &maxm[O], &maxm[1]);
#else
    scanf("%" NAG_IFMT " %" NAG_IFMT "%*[^\n]", &maxm[O], &maxm[1]);
#endif
    /* Read name of scaling in case of approximation and convert to value. */
#ifdef _WIN32
    scanf_s(" %39s%*[^\n]", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
#else
    scanf(" %39s%*[^\n]", nag_enum_arg);
#endif
    *corr = (Nag_EmbedScale) nag_enum_name_to_value(nag_enum_arg);
    /* Read in choice of padding and convert name to value. */
#ifdef _WIN32
    scanf_s(" %39s%*[^\n]", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
#else
    scanf(" %39s%*[^\n]", nag_enum_arg);
#endif
    *pad = (Nag_EmbedPad) nag_enum_name_to_value(nag_enum_arg);
}
void display_results(Integer approx, Integer *m, double rho, double *eig,
                                    Integer icount, double *lam)
{
    /* Scalars */
    Integer i, j;
    /* Display size of embedding matrix */
    printf("\nSize of embedding matrix = %" NAG_IFMT "\n\n", m[0] * m[1]);
    /* Display approximation information if approximation used. */
    if (approx == 1) {
        printf("Approximation required\n\n");
        printf("rho = %10.5f\n", rho);
        printf("eig = ");
        for (j = 0; j < 3; j++)
            printf("%10.5f", eig[j]);
        printf("\nicount = %" NAG_IFMT "\n", icount);
    }
    else {
        printf("Approximation not required\n");
    }
    /* Display square roots of the eigenvalues of the embedding matrix. */
    printf("\nSquare roots of eigenvalues of embedding matrix:\n\n");
    for (i = 0; i < m[0]; i++) {
        for (j = 0; j < m[1]; j++) {
            printf("%8.4f", lam[i + j * m[0]]);
        }
        printf("\n");
    }
}
static void NAG_CALL cov2(double t1, double t2, double *gamma, Nag_Comm *comm)
{
    /* Scalars */
    double l1, l2, nu, rnorm, tc1, tc2;
    Integer norm;
    /* Covariance parameters stored in user array. */
    norm = comm->iuser[0];
```

```
    11 = comm->user[0];
    l2 = comm->user[1];
    nu = comm->user[2];
    tc1 = fabs(t1) / l1;
    tc2 = fabs(t2) / l2;
    if (norm == (Integer) Nag_OneNorm) {
        rnorm = tcl + tc2;
    }
    else if (norm == (Integer) Nag_TwoNorm) {
        rnorm = sqrt(tc1 * tc1 + tc2 * tc2);
    }
    else
        rnorm = 0.0;
    *gamma = exp(-(pow(rnorm, nu)));
}
```


10.2 Program Data

10.3 Program Results

Size of embedding matrix = 64							
Approximation not required							
Square roots of eigenvalues of embedding matrix:							
0.8966	0.8234	0.6810	0.5757	0.5391	0.5757	0.6810	0.8234
0.8940	0.8217	0.6804	0.5756	0.5391	0.5756	0.6804	0.8217
0.8877	0.8175	0.6792	0.5754	0.5391	0.5754	0.6792	0.8175
0.8813	0.8133	0.6780	0.5751	0.5390	0.5751	0.6780	0.8133
0.8787	0.8116	0.6774	0.5750	0.5390	0.5750	0.6774	0.8116
0.8813	0.8133	0.6780	0.5751	0.5390	0.5751	0.6780	0.8133
0.8877	0.8175	0.6792	0.5754	0.5391	0.5754	0.6792	0.8175
0.8940	0.8217	0.6804	0.5756	0.5391	0.5756	0.6804	0.8217

