NAG Library Function Document nag_ztpqrt (f08bpc)

1 Purpose

nag_ztpqrt (f08bpc) computes the $Q R$ factorization of a complex $(m+n)$ by n triangular-pentagonal matrix.

2 Specification

```
#include <nag.h>
#include <nagf08.h>
void nag_ztpqrt (Nag_OrderType order, Integer m, Integer n, Integer l,
    Integer nb, Complex a[], Integer pda, Complex b[], Integer pdb,
    Complex t[], Integer pdt, NagError *fail)
```


3 Description

nag_ztpqrt (f08bpc) forms the $Q R$ factorization of a complex $(m+n)$ by n triangular-pentagonal matrix C,

$$
C=\binom{A}{B}
$$

where A is an upper triangular n by n matrix and B is an m by n pentagonal matrix consisting of an $(m-l)$ by n rectangular matrix B_{1} on top of an l by n upper trapezoidal matrix B_{2} :

$$
B=\binom{B_{1}}{B_{2}}
$$

The upper trapezoidal matrix B_{2} consists of the first l rows of an n by n upper triangular matrix, where $0 \leq l \leq \min (m, n)$. If $l=0, B$ is m by n rectangular; if $l=n$ and $m=n, B$ is upper triangular.

A recursive, explicitly blocked, $Q R$ factorization (see nag_zgeqrt (f08apc)) is performed on the matrix C. The upper triangular matrix R, details of the unitary matrix Q, and further details (the block reflector factors) of Q are returned.
Typically the matrix A or B_{2} contains the matrix R from the $Q R$ factorization of a subproblem and nag_ztpqrt (f08bpc) performs the $Q R$ update operation from the inclusion of matrix B_{1}.

For example, consider the $Q R$ factorization of an l by n matrix \hat{B} with $l<n: \hat{B}=\hat{Q} \hat{R}$, $\hat{R}=\left(\begin{array}{ll}\hat{R}_{1} & \hat{R}_{2}\end{array}\right)$, where \hat{R}_{1} is l by l upper triangular and \hat{R}_{2} is $(n-l)$ by n rectangular (this can be performed by nag_zgeqrt (f08apc)). Given an initial least-squares problem $\hat{B} \hat{X}=\hat{Y}$ where X and Y are l by $n r h s$ matrices, we have $\hat{R} \hat{X}=\hat{Q}^{\mathrm{H}} \hat{Y}$.
Now, adding an additional $m-l$ rows to the original system gives the augmented least squares problem

$$
B X=Y
$$

where B is an m by n matrix formed by adding $m-l$ rows on top of \hat{R} and Y is an m by nrhs matrix formed by adding $m-l$ rows on top of $\hat{Q}^{\mathrm{H}} \hat{Y}$.
nag_ztpqrt (f08bpc) can then be used to perform the $Q R$ factorization of the pentagonal matrix B; the n by \bar{n} matrix A will be zero on input and contain R on output.

In the case where \hat{B} is r by $n, r \geq n, \hat{R}$ is n by n upper triangular (forming A) on top of $r-n$ rows of zeros (forming first $r-n$ rows of B). Augmentation is then performed by adding rows to the bottom of B with $l=0$.

4 References

Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel $Q R$ Factorization Leads to Better Performance IBM Journal of Research and Development. (Volume 44) 4 605-624

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore

5 Arguments

1: order - Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., rowmajor ordering or column-major ordering. C language defined storage is specified by order $=$ Nag_RowMajor. See Section 2.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: order $=$ Nag_RowMajor or Nag_ColMajor.
2: $\quad \mathbf{m}$ - Integer
Input
On entry: m, the number of rows of the matrix B.
Constraint: $\mathbf{m} \geq 0$.
3: \mathbf{n} - Integer
Input
On entry: n, the number of columns of the matrix B and the order of the upper triangular matrix A.

Constraint: $\mathbf{n} \geq 0$.
4: \quad l - Integer
Input
On entry: l, the number of rows of the trapezoidal part of B (i.e., B_{2}).
Constraint: $0 \leq \mathbf{l} \leq \min (\mathbf{m}, \mathbf{n})$.
5: nb - Integer
Input
On entry: the explicitly chosen block-size to be used in the algorithm for computing the $Q R$ factorization. See Section 9 for details.

Constraints:

```
        nb }\geq1
    if \mathbf{n}>0,\mathbf{nb}\leq\mathbf{n}.
```

6: $\quad \mathbf{a}[\mathrm{dim}]-$ Complex
Input/Output
Note: the dimension, dim, of the array a must be at least $\max (1, \mathbf{p d a} \times \mathbf{n})$.
The (i, j) th element of the matrix A is stored in
$\mathbf{a}[(j-1) \times$ pda $+i-1]$ when order $=$ Nag_ColMajor;
$\mathbf{a}[(i-1) \times \mathbf{p d a}+j-1]$ when $\mathbf{o r d e r}=$ Nag_RowMajor..

On entry: the n by n upper triangular matrix A.
On exit: the upper triangle is overwritten by the corresponding elements of the n by n upper triangular matrix R.

7: pda - Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraint: $\mathbf{p d a} \geq \max (1, \mathbf{n})$.
8: $\quad \mathbf{b}[$ dim $]$ - Complex
Input/Output
Note: the dimension, dim, of the array \mathbf{b} must be at least

$$
\max (1, \mathbf{p d b} \times \mathbf{n}) \text { when } \mathbf{o r d e r}=\text { Nag_ColMajor; }
$$

$\max (1, \mathbf{m} \times \mathbf{p d b})$ when order $=$ Nag_RowMajor.
The (i, j) th element of the matrix B is stored in
$\mathbf{b}[(j-1) \times \mathbf{p d b}+i-1]$ when order $=$ Nag_ColMajor;
$\mathbf{b}[(i-1) \times \mathbf{p d b}+j-1]$ when order $=$ Nag_RowMajor.
On entry: the m by n pentagonal matrix B composed of an $(m-l)$ by n rectangular matrix B_{1} above an l by n upper trapezoidal matrix B_{2}.

On exit: details of the unitary matrix Q.

9: $\quad \mathbf{p d b}$ - Integer
Input
On entry: the stride separating row or column elements (depending on the value of order) in the array \mathbf{b}.

Constraints:

if order $=$ Nag_ColMajor, $\mathbf{p d b} \geq \max (1, \mathbf{m})$;
if $\boldsymbol{o r d e r}=$ Nag_RowMajor, $\mathbf{p d b} \geq \max (1, \mathbf{n})$.
10: $\quad \mathbf{t}[\mathrm{dim}]-$ Complex
Output
Note: the dimension, dim, of the array \mathbf{t} must be at least
$\max (1, \mathbf{p d t} \times \mathbf{n})$ when order $=$ Nag_ColMajor;
$\max (1, \mathbf{n b} \times \mathbf{p d t})$ when order $=$ Nag_RowMajor.
The (i, j) th element of the matrix T is stored in
$\mathbf{t}[(j-1) \times \mathbf{p d t}+i-1]$ when order $=$ Nag_ColMajor;
$\mathbf{t}[(i-1) \times \mathbf{p d t}+j-1]$ when order $=$ Nag_RowMajor.

On exit: further details of the unitary matrix Q. The number of blocks is $b=\left\lceil\frac{k}{\mathbf{n b}}\right\rceil$, where $k=\min (m, n)$ and each block is of order $\mathbf{n b}$ except for the last block, which is of order $k-(b-1) \times \mathbf{n b}$. For each of the blocks, an upper triangular block reflector factor is computed: $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}, \ldots, \boldsymbol{T}_{b}$. These are stored in the nb by n matrix T as $\boldsymbol{T}=\left[\boldsymbol{T}_{1}\left|\boldsymbol{T}_{2}\right| \ldots \mid \boldsymbol{T}_{b}\right]$.

11: pdt - Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array \mathbf{t}.
Constraints:
if $\mathbf{o r d e r}=$ Nag_ColMajor, $\mathbf{p d t} \geq \mathbf{n b} ;$
if order $=$ Nag_RowMajor, pdt $\geq \mathbf{n}$.

12: fail - NagError *
Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_INT

On entry, $\mathbf{m}=\langle$ value \rangle.
Constraint: $\mathbf{m} \geq 0$.
On entry, $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n} \geq 0$.

NE_INT_2

On entry, $\mathbf{n b}=\langle$ value \rangle and $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n b} \geq 1$ and
if $\mathbf{n}>0, \mathbf{n b} \leq \mathbf{n}$.
On entry, pda $=\langle$ value \rangle and $\mathbf{n}=\langle$ value \rangle.
Constraint: pda $\geq \max (1, \mathbf{n})$.
On entry, $\mathbf{p d b}=\langle$ value \rangle and $\mathbf{m}=\langle$ value \rangle.
Constraint: $\mathbf{p d b} \geq \max (1, \mathbf{m})$.
On entry, pdb $=\langle$ value \rangle and $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{p d b} \geq \max (1, \mathbf{n})$.
On entry, pdt $=\langle$ value \rangle and $\mathbf{n}=\langle$ value \rangle.
Constraint: pdt $\geq \mathbf{n}$.
On entry, $\mathbf{p d t}=\langle$ value \rangle and $\mathbf{n b}=\langle$ value \rangle.
Constraint: pdt $\geq \mathbf{n b}$.

NE_INT_3

On entry, $\mathbf{l}=\langle$ value $\rangle, \mathbf{m}=\langle$ value \rangle and $\mathbf{n}=\langle$ value \rangle.
Constraint: $0 \leq \mathbf{l} \leq \min (\mathbf{m}, \mathbf{n})$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix $(A+E)$, where

$$
\|E\|_{2}=O(\epsilon)\|A\|_{2}
$$

and ϵ is the machine precision.

8 Parallelism and Performance

nag_ztpqrt (f08bpc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately $\frac{2}{3} n^{2}(3 m-n)$ if $m \geq n$ or $\frac{2}{3} m^{2}(3 n-m)$ if $m<n$.

The block size, nb, used by nag_ztpqrt (f08bpc) is supplied explicitly through the interface. For moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the algorithm with the optimal value being dependent on problem size and platform. A value of $\mathbf{n b}=64 \ll \min (m, n)$ is likely to achieve good efficiency and it is unlikely that an optimal value would exceed 340.

To apply Q to an arbitrary complex rectangular matrix C, nag_ztpqrt (f08bpc) may be followed by a call to nag_ztpmqrt (f08bqc). For example,

```
nag_ztpmqrt(Nag_ColMajor,Nag_LeftSide,Nag_Trans,m,p,n,l,nb,b,pdb,
    t,pdt,c,pdc,&c(n+1,1),ldc,&fail)
```

forms $C=Q^{\mathrm{H}} C$, where C is $(m+n)$ by p.
To form the unitary matrix Q explicitly set $p=m+n$, initialize C to the identity matrix and make a call to nag_ztpmqrt (f08bqc) as above.

10 Example

This example finds the basic solutions for the linear least squares problems

$$
\operatorname{minimize}\left\|A x_{i}-b_{i}\right\|_{2}, \quad i=1,2
$$

where b_{1} and b_{2} are the columns of the matrix B,

$$
\begin{array}{r}
A=\left(\begin{array}{rrrr}
0.96-0.81 i & -0.03+0.96 i & -0.91+2.06 i & -0.05+0.41 i \\
-0.98+1.98 i & -1.20+0.19 i & -0.66+0.42 i & -0.81+0.56 i \\
0.62-0.46 i & 1.01+0.02 i & 0.63-0.17 i & -1.11+0.60 i \\
-0.37+0.38 i & 0.19-0.54 i & -0.98-0.36 i & 0.22-0.20 i \\
0.83+0.51 i & 0.20+0.01 i & -0.17-0.46 i & 1.47+1.59 i \\
1.08-0.28 i & 0.20-0.12 i & -0.07+1.23 i & 0.26+0.26 i
\end{array}\right) \quad \text { and } \\
B=\left(\begin{array}{rrr}
-2.09+1.93 i & 3.26-2.70 i \\
3.34-3.53 i & -6.22+1.16 i \\
-4.94-2.04 i & 7.94-3.13 i \\
0.17+4.23 i & 1.04-4.26 i \\
-5.19+3.63 i & -2.31-2.12 i \\
0.98+2.53 i & -1.39-4.05 i
\end{array}\right)
\end{array}
$$

A $Q R$ factorization is performed on the first 4 rows of A using nag_zgeqrt (f08apc) after which the first 4 rows of B are updated by applying Q^{T} using nag_zgemqrt (f08aqc). The remaining row is added by performing a $Q R$ update using nag_ztpqrt (f08bpc); B is updated by applying the new Q^{T} using nag_ztpmqrt (f08bqc); the solution is finally obtained by triangular solve using R from the updated $Q R$.

10.1 Program Text

```
/* nag_ztpqrt (f08bpc) Example Program.
    *
    * NAGPRODCODE Version.
    *
    * Copyright 2016 Numerical Algorithms Group.
    *
    * Mark 26, 2016.
    */
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagf16.h>
#include <nagx04.h>
int main(void)
{
    /* Scalars */
    double rnorm;
    Integer exit_status = 0;
    Integer pda, pdb, pdt;
    Integer i, j, m, n, nb, nrhs;
    /* Arrays */
    Complex *a = 0, *b = 0, *c = 0, *t = 0;
    /* Nag Types */
    Nag_OrderType order;
    NagError fail;
#ifdef NAG_COLUMN_MAJOR
#define A( }\overline{I},J) a[(J-1)*pda + I-1]
#define B(I,J) b[(J-1)*pdb + I-1]
#define C(I,J) c[(J-1)*pdb + I-1]
    order = Nag_Colmajor;
#else
#define A(I,J) a[(I-1)*pda + J-1]
#define B(I,J) b[(I-1)*pdb + J-1]
#define C(I,J) c[(I-1)*pdb + J-1]
    order = Nag_RowMajor;
#endif
    INIT_FAIL(fail);
    printf("nag_ztpqrt (f08bpc) Example Program Results\n\n");
    fflush(stdout);
    /* Skip heading in data file */
#ifdef _WIN32
    scanf_s("%*[^\n]");
#else
    scanf("%*[^\n]");
#endif
#ifdef _WIN32
    scanf_s("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &m, &n, &nrhs);
#else
    scanf("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &m, &n, &nrhs);
#endif
    nb = MIN(m, n);
    if (!(a = NAG_ALLOC(m * n, Complex)) ||
        !(b = NAG_ALLOC(m * nrhs, Complex)) ||
        !(c = NAG_ALLOC(m * nrhs, Complex)) ||
        !(t = NAG_ALLOC (nb * MIN(m, n), Complex)))
    {
        printf("Allocation failure\n");
        exit_status = -1;
        goto END;
    }
#ifdef NAG_COLUMN_MAJOR
    pda = m;
```

```
    pdb = m;
    pdt = nb;
#else
    pda = n;
    pdb = nrhs;
    pdt = MIN(m, n);
#endif
    /* Read A and B from data file */
    for (i = 1; i <= m; ++i)
        for (j = 1; j <= n; ++j)
#ifdef _WIN32
        scanf_s(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
#else
        scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
#endif
#ifdef _WIN32
    scanf_s("%*[^\n]");
#else
    scanf("%*[^\n]");
#endif
    for (i = 1; i <= m; ++i)
        for (j = 1; j <= nrhs; ++j)
#ifdef _WIN32
            scanf_s(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
#else
            scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
#endif
#ifdef _WIN32
    scanf_s("%*[^\n]");
#else
    scanf("%*[^\n]");
#endif
    for (i = 1; i <= m; ++i)
        for (j = 1; j <= nrhs; ++j)
            C(i, j) = B(i, j);
    /* nag_zgeqrt (f08apc).
        * Compute the QR factorization of first n rows of A by recursive algorithm.
        */
    nag_zgeqrt(order, n, n, nb, a, pda, t, pdt, &fail);
    if (fail.code != NE_NOERROR) {
        printf("Error from nag_zgeqrt (f08apc).\n%s\n", fail.message);
        exit_status = 1;
        goto END;
    }
    /* nag_zgemqrt (f08aqc).
        * Compute C = (C1) = (Q^H)*B, storing the result in C
        * (C2)
        * by applying Q^H from left.
        */
    nag_zgemqrt(order, Nag_LeftSide, Nag_ConjTrans, n, nrhs, n, nb, a, pda, t,
                        pdt, c, pdb, &fail);
    if (fail.code != NE_NOERROR) {
        printf("Error from nag_zgemqrt (f08aqc).\n%s\n", fail.message);
        exit_status = 1;
        goto END;
}
    for (i = 1; i <= n; ++i)
        for (j = 1; j <= nrhs; ++j)
            B(i, j) = C(i, j);
    /* nag_ztrtrs (f07tsc).
    * Compute least squares solutions for first n rows
    * by back-substitution in R*X = C1.
    */
nag_ztrtrs(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, n, nrhs, a, pda,
```

```
                c, pdb, &fail);
if (fail.code != NE_NOERROR) {
    printf("Error from nag_ztrtrs (f07tsc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}
/* nag_gen_complx_mat_print_comp (x04dbc).
    * Print least squares solutions using first n rows.
    */
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
                                    nrhs, c, pdb, Nag_BracketForm, "%7.4f",
                                    "Solution(s) for n rows", Nag_IntegerLabels,
                                    O, Nag_IntegerLabels, 0, 80, 0, O, &fail);
if (fail.code != NE_NOERROR) {
    printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
                fail.message);
    exit_status = 1;
    goto END;
}
/* nag_ztpqrt (f08bpc).
    * Now add the remaining rows and perform QR update.
    */
nag_ztpqrt(order, m - n, n, 0, nb, a, pda, &A(n + 1, 1), pda, t, pdt,
                &fail);
if (fail.code != NE_NOERROR) {
    printf("Error from nag_ztpqrt (f08bpc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}
/* nag_ztpmqrt (f08bqc).
    * Apply orthogonal transformations to C.
    */
nag_ztpmqrt(order, Nag_LeftSide, Nag_ConjTrans, m - n, nrhs, n, 0, nb,
                    &A(n + 1, 1), pda, t, pdt, b, pdb, &B(5, 1), pdb, &fail);
if (fail.code != NE_NOERROR) {
    printf("Error from nag_ztpmqrt (f08bqc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}
/* nag_ztrtrs (f07tsc).
    * Compute least squares solutions for first n rows
    * by back-substitution in R*X = C1.
    */
nag_ztrtrs(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, n, nrhs, a, pda,
            b, pdb, &fail);
if (fail.code != NE_NOERROR) {
    printf("Error from nag_ztrtrs (f07tsc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}
/* nag_gen_complx_mat_print_comp (x04dbc).
    * Print least squares solutions.
    */
printf("\n");
fflush(stdout);
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
                                    nrhs, b, pdb, Nag_BracketForm, "%7.4f",
                                    "Least squares solution(s) for all rows",
                                    Nag_IntegerLabels, 0, Nag_IntegerLabels, 0,
                                    80, 0, 0, &fail);
if (fail.code != NE_NOERROR) {
    printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
            fail.message);
    exit_status = 1;
    goto END;
}
```

```
    printf("\n Square root(s) of the residual sum(s) of squares\n");
    for (j = 1; j <= nrhs; j++) {
        /* nag_zge_norm (f16uac).
            * Compute and print estimate of the square root of the residual
            * sum of squares.
            */
            nag_zge_norm(order, Nag_FrobeniusNorm, m - n, 1, &B(n + 1, j), pdb,
                &rnorm, &fail);
            if (fail.code != NE_NOERROR) {
                printf("\nError from nag_zge_norm (f16uac).\n%s\n", fail.message);
            exit_status = 1;
            goto END;
    }
    printf(" %11.2e ", rnorm);
}
printf("\n");
END:
    NAG_FREE(a);
    NAG_FREE(b);
    NAG_FREE(c);
    NAG_FREE(t);
    return exit_status;
}
```


10.2 Program Data

nag_ztpqrt (f08bpc) Example Program Data

10.3 Program Results

```
nag_ztpqrt (f08bpc) Example Program Results
Solution(s) for n rows
1 (-0.5091,-1.2428) ( 0.7569, 1.4384)
2 (-2.3789, 2.8651) ( 5.1727,-3.6193)
3 ( 1.4634,-2.2064) (-2.6613, 2.1339)
4 (0.4701, 2.6964) (-2.6933, 0.2724)
Least squares solution(s) for all rows
1 (-0.5044,-1.2179) ( 0.7629, 1.4529)
2 (-2.4281, 2.8574) ( 5.1570,-3.6089)
3 ( 1.4872,-2.1955) (-2.6518, 2.1203)
4 ( 0.4537, 2.6904) (-2.7606, 0.3318)
```

Square root(s) of the residual sum(s) of squares
$6.88 e-02 \quad 1.87 e-01$

