# NAG C Library Function Document

## 1Purpose

nag_dsbgvx (f08ubc) computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form
 $Az=λBz ,$
where $A$ and $B$ are symmetric and banded, and $B$ is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.

## 2Specification

 #include #include
 void nag_dsbgvx (Nag_OrderType order, Nag_JobType job, Nag_RangeType range, Nag_UploType uplo, Integer n, Integer ka, Integer kb, double ab[], Integer pdab, double bb[], Integer pdbb, double q[], Integer pdq, double vl, double vu, Integer il, Integer iu, double abstol, Integer *m, double w[], double z[], Integer pdz, Integer jfail[], NagError *fail)

## 3Description

The generalized symmetric-definite band problem
 $Az = λ Bz$
is first reduced to a standard band symmetric problem
 $Cx = λx ,$
where $C$ is a symmetric band matrix, using Wilkinson's modification to Crawford's algorithm (see Crawford (1973) and Wilkinson (1977)). The symmetric eigenvalue problem is then solved for the required eigenvalues and eigenvectors, and the eigenvectors are then backtransformed to the eigenvectors of the original problem.
The eigenvectors are normalized so that
 $zT A z = λ and zT B z = 1 .$

## 4References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Crawford C R (1973) Reduction of a band-symmetric generalized eigenvalue problem Comm. ACM 16 41–44
Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist. Comput. 11 873–912
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
Wilkinson J H (1977) Some recent advances in numerical linear algebra The State of the Art in Numerical Analysis (ed D A H Jacobs) Academic Press

## 5Arguments

1:    $\mathbf{order}$Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2:    $\mathbf{job}$Nag_JobTypeInput
On entry: indicates whether eigenvectors are computed.
${\mathbf{job}}=\mathrm{Nag_EigVals}$
Only eigenvalues are computed.
${\mathbf{job}}=\mathrm{Nag_DoBoth}$
Eigenvalues and eigenvectors are computed.
Constraint: ${\mathbf{job}}=\mathrm{Nag_EigVals}$ or $\mathrm{Nag_DoBoth}$.
3:    $\mathbf{range}$Nag_RangeTypeInput
On entry: if ${\mathbf{range}}=\mathrm{Nag_AllValues}$, all eigenvalues will be found.
If ${\mathbf{range}}=\mathrm{Nag_Interval}$, all eigenvalues in the half-open interval $\left({\mathbf{vl}},{\mathbf{vu}}\right]$ will be found.
If ${\mathbf{range}}=\mathrm{Nag_Indices}$, the ilth to iuth eigenvalues will be found.
Constraint: ${\mathbf{range}}=\mathrm{Nag_AllValues}$, $\mathrm{Nag_Interval}$ or $\mathrm{Nag_Indices}$.
4:    $\mathbf{uplo}$Nag_UploTypeInput
On entry: if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangles of $A$ and $B$ are stored.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangles of $A$ and $B$ are stored.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
5:    $\mathbf{n}$IntegerInput
On entry: $n$, the order of the matrices $A$ and $B$.
Constraint: ${\mathbf{n}}\ge 0$.
6:    $\mathbf{ka}$IntegerInput
On entry: if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the number of superdiagonals, ${k}_{a}$, of the matrix $A$.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the number of subdiagonals, ${k}_{a}$, of the matrix $A$.
Constraint: ${\mathbf{ka}}\ge 0$.
7:    $\mathbf{kb}$IntegerInput
On entry: if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the number of superdiagonals, ${k}_{b}$, of the matrix $B$.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the number of subdiagonals, ${k}_{b}$, of the matrix $B$.
Constraint: ${\mathbf{ka}}\ge {\mathbf{kb}}\ge 0$.
8:    $\mathbf{ab}\left[\mathit{dim}\right]$doubleInput/Output
Note: the dimension, dim, of the array ab must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdab}}×{\mathbf{n}}\right)$.
On entry: the upper or lower triangle of the $n$ by $n$ symmetric band matrix $A$.
This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements of ${A}_{ij}$, depends on the order and uplo arguments as follows:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Upper}$,
${A}_{ij}$ is stored in ${\mathbf{ab}}\left[{k}_{a}+i-j+\left(j-1\right)×{\mathbf{pdab}}\right]$, for $j=1,\dots ,n$ and $i=\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,j-{k}_{a}\right),\dots ,j$;
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Lower}$,
${A}_{ij}$ is stored in ${\mathbf{ab}}\left[i-j+\left(j-1\right)×{\mathbf{pdab}}\right]$, for $j=1,\dots ,n$ and $i=j,\dots ,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(n,j+{k}_{a}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Upper}$,
${A}_{ij}$ is stored in ${\mathbf{ab}}\left[j-i+\left(i-1\right)×{\mathbf{pdab}}\right]$, for $i=1,\dots ,n$ and $j=i,\dots ,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(n,i+{k}_{a}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Lower}$,
${A}_{ij}$ is stored in ${\mathbf{ab}}\left[{k}_{a}+j-i+\left(i-1\right)×{\mathbf{pdab}}\right]$, for $i=1,\dots ,n$ and $j=\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,i-{k}_{a}\right),\dots ,i$.
On exit: the contents of ab are overwritten.
9:    $\mathbf{pdab}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $A$ in the array ab.
Constraint: ${\mathbf{pdab}}\ge {\mathbf{ka}}+1$.
10:  $\mathbf{bb}\left[\mathit{dim}\right]$doubleInput/Output
Note: the dimension, dim, of the array bb must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdbb}}×{\mathbf{n}}\right)$.
On entry: the upper or lower triangle of the $n$ by $n$ symmetric positive definite band matrix $B$.
This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements of ${B}_{ij}$, depends on the order and uplo arguments as follows:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Upper}$,
${B}_{ij}$ is stored in ${\mathbf{bb}}\left[{k}_{b}+i-j+\left(j-1\right)×{\mathbf{pdbb}}\right]$, for $j=1,\dots ,n$ and $i=\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,j-{k}_{b}\right),\dots ,j$;
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Lower}$,
${B}_{ij}$ is stored in ${\mathbf{bb}}\left[i-j+\left(j-1\right)×{\mathbf{pdbb}}\right]$, for $j=1,\dots ,n$ and $i=j,\dots ,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(n,j+{k}_{b}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Upper}$,
${B}_{ij}$ is stored in ${\mathbf{bb}}\left[j-i+\left(i-1\right)×{\mathbf{pdbb}}\right]$, for $i=1,\dots ,n$ and $j=i,\dots ,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(n,i+{k}_{b}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Lower}$,
${B}_{ij}$ is stored in ${\mathbf{bb}}\left[{k}_{b}+j-i+\left(i-1\right)×{\mathbf{pdbb}}\right]$, for $i=1,\dots ,n$ and $j=\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,i-{k}_{b}\right),\dots ,i$.
On exit: the factor $S$ from the split Cholesky factorization $B={S}^{\mathrm{T}}S$, as returned by nag_dpbstf (f08ufc).
11:  $\mathbf{pdbb}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $B$ in the array bb.
Constraint: ${\mathbf{pdbb}}\ge {\mathbf{kb}}+1$.
12:  $\mathbf{q}\left[\mathit{dim}\right]$doubleOutput
Note: the dimension, dim, of the array q must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdq}}×{\mathbf{n}}\right)$ when ${\mathbf{job}}=\mathrm{Nag_DoBoth}$;
• $1$ otherwise.
The $\left(i,j\right)$th element of the matrix $Q$ is stored in
• ${\mathbf{q}}\left[\left(j-1\right)×{\mathbf{pdq}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{q}}\left[\left(i-1\right)×{\mathbf{pdq}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, the $n$ by $n$ matrix, $Q$ used in the reduction of the standard form, i.e., $Cx=\lambda x$, from symmetric banded to tridiagonal form.
If ${\mathbf{job}}=\mathrm{Nag_EigVals}$, q is not referenced.
13:  $\mathbf{pdq}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array q.
Constraints:
• if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdq}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• otherwise ${\mathbf{pdq}}\ge 1$.
14:  $\mathbf{vl}$doubleInput
15:  $\mathbf{vu}$doubleInput
On entry: if ${\mathbf{range}}=\mathrm{Nag_Interval}$, the lower and upper bounds of the interval to be searched for eigenvalues.
If ${\mathbf{range}}=\mathrm{Nag_AllValues}$ or $\mathrm{Nag_Indices}$, vl and vu are not referenced.
Constraint: if ${\mathbf{range}}=\mathrm{Nag_Interval}$, ${\mathbf{vl}}<{\mathbf{vu}}$.
16:  $\mathbf{il}$IntegerInput
17:  $\mathbf{iu}$IntegerInput
On entry: if ${\mathbf{range}}=\mathrm{Nag_Indices}$, the indices (in ascending order) of the smallest and largest eigenvalues to be returned.
If ${\mathbf{range}}=\mathrm{Nag_AllValues}$ or $\mathrm{Nag_Interval}$, il and iu are not referenced.
Constraints:
• if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}=0$, ${\mathbf{il}}=1$ and ${\mathbf{iu}}=0$;
• if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}>0$, $1\le {\mathbf{il}}\le {\mathbf{iu}}\le {\mathbf{n}}$.
18:  $\mathbf{abstol}$doubleInput
On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $\left[a,b\right]$ of width less than or equal to
 $abstol+ε maxa,b ,$
where $\epsilon$ is the machine precision. If abstol is less than or equal to zero, then $\epsilon {‖T‖}_{1}$ will be used in its place, where $T$ is the tridiagonal matrix obtained by reducing $C$ to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold , not zero. If this function returns with ${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_CONVERGENCE, indicating that some eigenvectors did not converge, try setting abstol to . See Demmel and Kahan (1990).
19:  $\mathbf{m}$Integer *Output
On exit: the total number of eigenvalues found. $0\le {\mathbf{m}}\le {\mathbf{n}}$.
If ${\mathbf{range}}=\mathrm{Nag_AllValues}$, ${\mathbf{m}}={\mathbf{n}}$.
If ${\mathbf{range}}=\mathrm{Nag_Indices}$, ${\mathbf{m}}={\mathbf{iu}}-{\mathbf{il}}+1$.
20:  $\mathbf{w}\left[{\mathbf{n}}\right]$doubleOutput
On exit: the eigenvalues in ascending order.
21:  $\mathbf{z}\left[\mathit{dim}\right]$doubleOutput
Note: the dimension, dim, of the array z must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdz}}×{\mathbf{n}}\right)$ when ${\mathbf{job}}=\mathrm{Nag_DoBoth}$;
• $1$ otherwise.
The $\left(i,j\right)$th element of the matrix $Z$ is stored in
• ${\mathbf{z}}\left[\left(j-1\right)×{\mathbf{pdz}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{z}}\left[\left(i-1\right)×{\mathbf{pdz}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, then
• if ${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_NOERROR, the first m columns of $Z$ contain the eigenvectors corresponding to the selected eigenvalues, with the $i$th column of $Z$ holding the eigenvector associated with ${\mathbf{w}}\left[i-1\right]$. The eigenvectors are normalized so that ${Z}^{\mathrm{T}}BZ=I$;
• if an eigenvector fails to converge (${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_CONVERGENCE), then that column of $Z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in jfail.
If ${\mathbf{job}}=\mathrm{Nag_EigVals}$, z is not referenced.
22:  $\mathbf{pdz}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array z.
Constraints:
• if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdz}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• otherwise ${\mathbf{pdz}}\ge 1$.
23:  $\mathbf{jfail}\left[\mathit{dim}\right]$IntegerOutput
Note: the dimension, dim, of the array jfail must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On exit: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, then
• if ${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_NOERROR, the first m elements of jfail are zero;
• if ${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_CONVERGENCE, jfail contains the indices of the eigenvectors that failed to converge.
If ${\mathbf{job}}=\mathrm{Nag_EigVals}$, jfail is not referenced.
24:  $\mathbf{fail}$NagError *Input/Output
The NAG error argument (see Section 3.7 in How to Use the NAG Library and its Documentation).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_CONVERGENCE
The algorithm failed to converge; $〈\mathit{\text{value}}〉$ eigenvectors did not converge. Their indices are stored in array jfail.
NE_ENUM_INT_2
On entry, ${\mathbf{job}}=〈\mathit{\text{value}}〉$, ${\mathbf{pdq}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdq}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
otherwise ${\mathbf{pdq}}\ge 1$.
On entry, ${\mathbf{job}}=〈\mathit{\text{value}}〉$, ${\mathbf{pdz}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdz}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
otherwise ${\mathbf{pdz}}\ge 1$.
NE_ENUM_INT_3
On entry, ${\mathbf{range}}=〈\mathit{\text{value}}〉$, ${\mathbf{il}}=〈\mathit{\text{value}}〉$, ${\mathbf{iu}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}=0$, ${\mathbf{il}}=1$ and ${\mathbf{iu}}=0$;
if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}>0$, $1\le {\mathbf{il}}\le {\mathbf{iu}}\le {\mathbf{n}}$.
NE_ENUM_REAL_2
On entry, ${\mathbf{range}}=〈\mathit{\text{value}}〉$, ${\mathbf{vl}}=〈\mathit{\text{value}}〉$ and ${\mathbf{vu}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{range}}=\mathrm{Nag_Interval}$, ${\mathbf{vl}}<{\mathbf{vu}}$.
NE_INT
On entry, ${\mathbf{ka}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{ka}}\ge 0$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pdab}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdab}}>0$.
On entry, ${\mathbf{pdbb}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdbb}}>0$.
On entry, ${\mathbf{pdq}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdq}}>0$.
On entry, ${\mathbf{pdz}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdz}}>0$.
NE_INT_2
On entry, ${\mathbf{ka}}=〈\mathit{\text{value}}〉$ and ${\mathbf{kb}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{ka}}\ge {\mathbf{kb}}\ge 0$.
On entry, ${\mathbf{pdab}}=〈\mathit{\text{value}}〉$ and ${\mathbf{ka}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdab}}\ge {\mathbf{ka}}+1$.
On entry, ${\mathbf{pdbb}}=〈\mathit{\text{value}}〉$ and ${\mathbf{kb}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdbb}}\ge {\mathbf{kb}}+1$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
NE_MAT_NOT_POS_DEF
If ${\mathbf{fail}}\mathbf{.}\mathbf{errnum}={\mathbf{n}}+〈\mathit{\text{value}}〉$, for $1\le 〈\mathit{\text{value}}〉\le {\mathbf{n}}$, nag_dpbstf (f08ufc) returned ${\mathbf{fail}}\mathbf{.}\mathbf{errnum}=〈\mathit{\text{value}}〉$: $B$ is not positive definite. The factorization of $B$ could not be completed and no eigenvalues or eigenvectors were computed.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

## 7Accuracy

If $B$ is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and vectors may be large, although when the diagonal elements of $B$ differ widely in magnitude the eigenvalues and eigenvectors may be less sensitive than the condition of $B$ would suggest. See Section 4.10 of Anderson et al. (1999) for details of the error bounds.

## 8Parallelism and Performance

nag_dsbgvx (f08ubc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_dsbgvx (f08ubc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The total number of floating-point operations is proportional to ${n}^{3}$ if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$ and ${\mathbf{range}}=\mathrm{Nag_AllValues}$, and assuming that $n\gg {k}_{a}$, is approximately proportional to ${n}^{2}{k}_{a}$ if ${\mathbf{job}}=\mathrm{Nag_EigVals}$. Otherwise the number of floating-point operations depends upon the number of eigenvectors computed.
The complex analogue of this function is nag_zhbgvx (f08upc).

## 10Example

This example finds the eigenvalues in the half-open interval $\left(0.0,1.0\right]$, and corresponding eigenvectors, of the generalized band symmetric eigenproblem $Az=\lambda Bz$, where
 $A = 0.24 0.39 0.42 0.00 0.39 -0.11 0.79 0.63 0.42 0.79 -0.25 0.48 0.00 0.63 0.48 -0.03 and B = 2.07 0.95 0.00 0.00 0.95 1.69 -0.29 0.00 0.00 -0.29 0.65 -0.33 0.00 0.00 -0.33 1.17 .$

### 10.1Program Text

Program Text (f08ubce.c)

### 10.2Program Data

Program Data (f08ubce.d)

### 10.3Program Results

Program Results (f08ubce.r)