
X02 – Machine Constants

Chapter X02

Machine Constants

Contents

1 Scope of the Chapter 2

2 Background to the Problems 2
2.1 Floating-point Arithmetic . 2

2.1.1 A model of floating-point arithmetic . 2
2.1.2 Derived parameters of floating-point arithmetic . 3

2.2 Other Aspects of the Computing Environment . 4
2.3 References . 4

3 Recommendations on Choice and Use of Available Routines 4
3.1 Parameters of Floating-point Arithmetic . 4
3.2 Parameters of Other Aspects of the Computing Environment 5

4 Example 5
4.1 Example Text . 5
4.2 Example Data . 6
4.3 Example Results . 6

[NP3344/3/pdf] X02.1

Introduction – X02 NAG Parallel Library Manual

1 Scope of the Chapter

This chapter is concerned with parameters which characterise certain aspects of the computing
environment in which the NAG Parallel Library is implemented. They relate primarily to floating-point
arithmetic, but also to integer arithmetic and the elementary functions. The values of the parameters vary
from one implementation of the Library to another, but within the context of a single implementation
they are constants.

The parameters are intended for use primarily by other routines in the Library, but users of the Library
may sometimes need to refer to them directly.

Each parameter value is returned by a separate Fortran function. Because of the simple nature of the
functions, individual routine documents are not provided; the necessary details are given in Section 3 of
this Introduction.

2 Background to the Problems
2.1 Floating-point Arithmetic
2.1.1 A model of floating-point arithmetic

In order to characterise the important properties of floating-point arithmetic by means of a small number
of parameters, NAG uses a simplified model of floating-point arithmetic. The parameters of the model
can be chosen to provide a sufficiently close description of the behaviour of actual implementations of
floating-point arithmetic, but not, in general, an exact description; actual implementations may vary
in the details of how numbers are represented or arithmetic operations are performed. In particular,
denormalized numbers and gradual underflow is not treated by this model.

The model is based on that developed by Brown [1], but differs in some respects. The essential features
are summarised here.

The model is characterised by four integer parameters and one logical parameter. The four integer
parameters are:

b: the base

p: the precision (i.e., the number of significant base-b digits)

emin: the minimum exponent

emax: the maximum exponent

These parameters define a set of numerical values of the form:

f × be

where the exponent e must lie in the range [emin, emax], and the fraction f (also called the mantissa or
significand) lies in the range [1/b, 1), and may be written:

f = 0.f1f2 . . . fp.

Thus f is a p-digit fraction to the base b; the fi are the base-b digits of the fraction: they are integers in
the range 0 to b − 1, and the leading digit f1 must not be zero.

The set of values so defined (together with zero) are called model numbers. For example, if b = 10, p
= 5, emin = −99 and emax = +99, then a typical model number is 0.12345 × 1067.

The model numbers must obey certain rules for the computed results of the following basic arithmetic
operations: addition, subtraction, multiplication, negation, absolute value, and comparisons. The rules
depend on the value of the logical parameter ROUNDS.

If ROUNDS is true, then the computed result must be the nearest model number to the exact result
(assuming that overflow or underflow does not occur); if the exact result is midway between two model
numbers, then it may be rounded either way.

If ROUNDS is false, then: if the exact result is a model number, the computed result must be equal to
the exact result; otherwise, the computed result may be either of the adjacent model numbers on either
side of the exact result.

X02.2 [NP3344/3/pdf]

X02 – Machine Constants Introduction – X02

For division and square root, this latter rule is further relaxed (regardless of the value of ROUNDS): the
computed result may also be one of the next adjacent model numbers on either side of the permitted
values just stated.

On some machines, the full set of representable floating-point numbers conforms to the rules of the model
with appropriate values of b, p, emin, emax and ROUNDS. For example, for machines supporting IEEE
binary double precision arithmetic:

b = 2
p = 53
emin = −1021
emax = 1024 and ROUNDS is true.

For other machines, values of the model parameters must be chosen which define a large subset of the
representable numbers; typically it may be necessary to decrease p by 1 (in which case ROUNDS is always
set to false), or to increase emin or decrease emax by a little bit. There are additional rules to ensure that
arithmetic operations on those representable numbers which are not model numbers are consistent with
arithmetic on model numbers.

(Note: the model used here differs from that described in Brown [1] in the following respects: square-root
is treated, like division, as a weakly supported operator; and the logical parameter ROUNDS has been
introduced to take account of machines with good rounding.)

2.1.2 Derived parameters of floating-point arithmetic

Most numerical algorithms require access, not to the basic parameters of the model, but to certain derived
values, of which the most important are:

the machine precision ε: = 1
2b1−p if ROUNDS is true; = b1−p otherwise (but see Note below).

the smallest positive model number: = bemin−1

the largest positive model number: = (1 − b−p)bemax

Note: this value is increased very slightly in some implementations to ensure that the computed result
of 1 + ε or 1 − ε differs from 1. For example in IEEE binary double precision arithmetic [2] the value is
usually set to 2−53 + 2−105 or 253 + 2−63.

Two additional derived values are used in the NAG Parallel Library. Their definitions depend not only
on the properties of the basic arithmetic operations just considered, but also on properties of some of the
elementary functions. We define the safe range parameter to be the smallest positive model number z
such that for any x in the range [z, 1/z] the following can be computed without undue loss of accuracy,
overflow, underflow or other error:

−x

1/x

−1/x

SQRT(x)

LOG(x)

EXP(LOG(x))

y**(LOG(x)/LOG(y)) for any real y

In a similar fashion we define the safe range parameter for complex arithmetic as the smallest positive
model number z such that for any x in the range [z, 1/z] the following can be computed without any
undue loss of accuracy, overflow, underflow or other error:

[NP3344/3/pdf] X02.3

Introduction – X02 NAG Parallel Library Manual

−w

1/w

−1/w

SQRT(w)

LOG(w)

EXP(LOG(w))

y**(LOG(w)/LOG(y)) for any complex y

ABS(w)

where w is any of x, ix, x+ ix, 1/x, i/x, 1/x+ i/x, and i is the square root of −1.

This parameter was introduced to take account of the quality of complex arithmetic on the machine. On
machines with well implemented complex arithmetic, its value will differ from that of the real safe range
parameter by a small multiplying factor less than 10. For poorly implemented complex arithmetic this
factor may be larger by many orders of magnitude.

2.2 Other Aspects of the Computing Environment

No attempt has been made to characterise comprehensively any other aspects of the computing
environment. The other functions in this chapter provide specific information that is occasionally required
by routines in the Library.

2.3 References

[1] Brown W S (1981) A simple but realistic model of floating-point computation ACM Trans. Math.
Software 7 445–480

[2] IEEE (1985) Standard for Binary Floating Point Arithmetic volume Standard 754-1985
ANSE/IEEE, New York.

3 Recommendations on Choice and Use of Available Routines
Note. Refer to the Users’ Note for your implementation to check that a routine is available.

Routines in this Chapter need not be preceded by a call to Z01AAFP.

3.1 Parameters of Floating-point Arithmetic

DOUBLE PRECISION FUNCTION X02AJF() returns themachine precision, i.e., 1
2b1−p if ROUNDS

is true or b1−p otherwise (or a value very slightly larger
than this, see Section 2.1.2)

DOUBLE PRECISION FUNCTION X02AKF() returns the smallest positive model number, i.e., bemin−1

DOUBLE PRECISION FUNCTION X02ALF() returns the largest positive model number, i.e., (1 −
b−p)bemax

DOUBLE PRECISION FUNCTION X02AMF() returns the safe range parameter as defined in Section
2.1.2

DOUBLE PRECISION FUNCTION X02ANF() returns the safe range parameter for complex
arithmetic as defined in Section 2.1.2

INTEGER FUNCTION X02BHF() returns the model parameter b
INTEGER FUNCTION X02BJF() returns the model parameter p
INTEGER FUNCTION X02BKF() returns the model parameter emin

INTEGER FUNCTION X02BLF() returns the model parameter emax

LOGICAL FUNCTION X02DJF() returns the model parameter ROUNDS

X02.4 [NP3344/3/pdf]

X02 – Machine Constants Introduction – X02

3.2 Parameters of Other Aspects of the Computing Environment

DOUBLE PRECISION FUNCTION X02AHF(X)
DOUBLE PRECISION X

returns the largest positive DOUBLE PRECISION
argument for which the sin and cos routines
return a result with some meaningful accuracy.
X is a dummy argument

INTEGER FUNCTION X02BBF() returns the largest positive integer value
INTEGER FUNCTION X02BEF() returns the maximum number of decimal digits

which can be accurately represented over the
whole range of floating-point numbers

INTEGER FUNCTION X02DAF()
DOUBLE PRECISION X

returns FALSE if the system sets underflowing
quantities to zero, without any error indication
or undesirable warning or system overhead. X is
a dummy argument.

4 Example

The Example Program listed below simply prints the values of all the functions in Chapter X02. Obviously
the results will vary from one implementation of the Library to another. The results listed in Section 4.3
are those from the Silicon Graphics (IRIX 4) implementation.

4.1 Example Text

* X02AJF Example Program Text
* NAG Parallel Library Release 2. NAG Copyright 1996
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. External Functions ..
DOUBLE PRECISION X02AHF, X02AJF, X02AKF, X02ALF, X02AMF, X02ANF
INTEGER X02BBF, X02BEF, X02BHF, X02BJF, X02BKF, X02BLF
LOGICAL X02DAF, X02DJF
EXTERNAL X02AHF, X02AJF, X02AKF, X02ALF, X02AMF, X02ANF,

+ X02BBF, X02BEF, X02BHF, X02BJF, X02BKF, X02BLF,
+ X02DAF, X02DJF

* .. Executable Statements ..
WRITE (NOUT,*) ’X02AJF Example Program Results’
WRITE (NOUT,*)
WRITE (NOUT,*) ’(results are machine-dependent)’
WRITE (NOUT,*)
WRITE (NOUT,*) ’The basic parameters of the model’
WRITE (NOUT,*)
WRITE (NOUT,99999) ’ X02BHF = ’, X02BHF(),

+ ’ (the model parameter B)’
WRITE (NOUT,99999) ’ X02BJF = ’, X02BJF(),

+ ’ (the model parameter P)’
WRITE (NOUT,99999) ’ X02BKF = ’, X02BKF(),

+ ’ (the model parameter EMIN)’
WRITE (NOUT,99999) ’ X02BLF = ’, X02BLF(),

+ ’ (the model parameter EMAX)’
WRITE (NOUT,99998) ’ X02DJF = ’, X02DJF(),

+ ’ (the model parameter ROUNDS)’
WRITE (NOUT,*)
WRITE (NOUT,*)

+ ’Derived parameters of floating-point arithmetic’
WRITE (NOUT,*)
WRITE (NOUT,*) ’ X02AJF = ’, X02AJF(),

+ ’ (the machine precision)’

[NP3344/3/pdf] X02.5

Introduction – X02 NAG Parallel Library Manual

WRITE (NOUT,*) ’ X02AKF = ’, X02AKF(),
+ ’ (the smallest positive model number)’
WRITE (NOUT,*) ’ X02ALF = ’, X02ALF(),

+ ’ (the largest positive model number)’
WRITE (NOUT,*) ’ X02AMF = ’, X02AMF(),

+ ’ (the real safe range parameter)’
WRITE (NOUT,*) ’ X02ANF = ’, X02ANF(),

+ ’ (the complex safe range parameter)’
WRITE (NOUT,*)
WRITE (NOUT,*)

+ ’Parameters of other aspects of the computing environment’
WRITE (NOUT,*)
WRITE (NOUT,*) ’ X02AHF = ’, X02AHF(0.0D0),

+ ’ (largest argument for SIN and COS)’
WRITE (NOUT,99997) ’ X02BBF = ’, X02BBF(0.0D0),

+ ’ (largest positive integer)’
WRITE (NOUT,99997) ’ X02BEF = ’, X02BEF(0.0D0),

+ ’ (precision in decimal digits)’
WRITE (NOUT,99996) ’ X02DAF = ’, X02DAF(0.0D0),

+ ’ (indicates how underflow is handled)’
STOP

*
99999 FORMAT (1X,A,I7,A)
99998 FORMAT (1X,A,L7,A)
99997 FORMAT (1X,A,I20,A)
99996 FORMAT (1X,A,L20,A)

END

4.2 Example Data

None.

4.3 Example Results

X02AJF Example Program Results

(results are machine-dependent)

The basic parameters of the model

X02BHF = 2 (the model parameter B)
X02BJF = 53 (the model parameter P)
X02BKF = -1021 (the model parameter EMIN)
X02BLF = 1024 (the model parameter EMAX)
X02DJF = T (the model parameter ROUNDS)

Derived parameters of floating-point arithmetic

X02AJF = 1.1102230246251600E-16 (the machine precision)
X02AKF = 2.2250738585072107-308 (the smallest positive model number)
X02ALF = 1.7976931348623093+308 (the largest positive model number)
X02AMF = 2.2250738585072107-308 (the real safe range parameter)
X02ANF = 2.2250738585072107-308 (the complex safe range parameter)

Parameters of other aspects of the computing environment

X02AHF = 1.8014398509481900E+16 (largest argument for SIN and COS)

X02.6 [NP3344/3/pdf]

X02 – Machine Constants Introduction – X02

X02BBF = 2147483647 (largest positive integer)
X02BEF = 15 (precision in decimal digits)
X02DAF = F (indicates how underflow is handled)

[NP3344/3/pdf] X02.7 (last)

