NAG Library Routine Document

G10BAF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose
G10BAF performs kernel density estimation using a Gaussian kernel.

2 Specification
SUBROUTINE G10BAF (N, X, WINDOW, SLO, SHI, NS, SMOOTH, T, USEFFT, FFT, & IFAIL)
INTEGER N, NS, IFAIL
REAL (KIND=nag_wp) X(N), WINDOW, SLO, SHI, SMOOTH(NS), T(NS), FFT(NS)
LOGICAL USEFFT

3 Description
Given a sample of \(n \) observations, \(x_1, x_2, \ldots, x_n \), from a distribution with unknown density function, \(f(x) \), an estimate of the density function, \(\hat{f}(x) \), may be required. The simplest form of density estimator is the histogram. This may be defined by:

\[
\hat{f}(x) = \frac{1}{nh}n_j, \quad a + (j - 1)h < x < a + jh, \quad j = 1, 2, \ldots, n_s,
\]

where \(n_j \) is the number of observations falling in the interval \(a + (j - 1)h \) to \(a + jh \), \(a \) is the lower bound to the histogram and \(b = n_s h \) is the upper bound. The value \(h \) is known as the window width. To produce a smoother density estimate a kernel method can be used. A kernel function, \(K(t) \), satisfies the conditions:

\[
\int_{-\infty}^{\infty} K(t) dt = 1 \quad \text{and} \quad K(t) \geq 0.
\]

The kernel density estimator is then defined as

\[
\hat{f}(x) = \frac{1}{nh} \sum_{j=1}^{n} K\left(\frac{x - x_j}{h}\right).
\]

The choice of \(K \) is usually not important but to ease the computational burden use can be made of the Gaussian kernel defined as

\[
K(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}.
\]

The smoothness of the estimator depends on the window width \(h \). The larger the value of \(h \) the smoother the density estimate. The value of \(h \) can be chosen by examining plots of the smoothed density for different values of \(h \) or by using cross-validation methods (see Silverman (1990)).

Silverman (1982) and Silverman (1990) show how the Gaussian kernel density estimator can be computed using a fast Fourier transform (FFT). In order to compute the kernel density estimate over the range \(a \) to \(b \) the following steps are required.

(i) Discretize the data to give \(n_s \) equally spaced points \(t_l \) with weights \(\xi_l \) (see Jones and Lotwick (1984)).

(ii) Compute the FFT of the weights \(\xi_l \) to give \(Y_r \).
(iii) Compute $\zeta_l = e^{-\frac{1}{2}h^2s_l^2}Y_l$ where $s_l = 2\pi l/(b - a)$.

(iv) Find the inverse FFT of ζ_l to give $\hat{f}(x)$.

To compute the kernel density estimate for further values of h only steps (iii) and (iv) need be repeated.

4 References

5 Parameters

1: N – INTEGER
 \textit{Input}
 On entry: n, the number of observations in the sample.
 Constraint: N > 0.

2: X(N) – REAL (KIND=nag_wp) array
 \textit{Input}
 On entry: the n observations, x_i, for $i = 1, 2, \ldots, n$.

3: WINDOW – REAL (KIND=nag_wp)
 \textit{Input}
 On entry: h, the window width.
 Constraint: WINDOW > 0.0.

4: SLO – REAL (KIND=nag_wp)
 \textit{Input}
 On entry: a, the lower limit of the interval on which the estimate is calculated. For most applications SLO should be at least three window widths below the lowest data point.
 Constraint: SLO < SHI.

5: SHI – REAL (KIND=nag_wp)
 \textit{Input}
 On entry: b, the upper limit of the interval on which the estimate is calculated. For most applications SHI should be at least three window widths above the highest data point.

6: NS – INTEGER
 \textit{Input}
 On entry: the number of points at which the estimate is calculated, n_s.
 Constraints:
 $NS \geq 2$;
 The largest prime factor of NS must not exceed 19, and the total number of prime factors of NS, counting repetitions, must not exceed 20.

7: SMOOTH(NS) – REAL (KIND=nag_wp) array
 \textit{Output}
 On exit: the n_s values of the density estimate, $\hat{f}(t_l)$, for $l = 1, 2, \ldots, n_s$.

8: T(NS) – REAL (KIND=nag_wp) array
 \textit{Output}
 On exit: the points at which the estimate is calculated, t_l, for $l = 1, 2, \ldots, n_s$.

G10BAF.NAG Library Manual

G10BAF2 Mark 24
9: USEFFT – LOGICAL

Input

On entry: must be set to .FALSE. if the values of \(Y_l \) are to be calculated by G10BAF and to .TRUE. if they have been computed by a previous call to G10BAF and are provided in FFT. If USEFFT = .TRUE. then the arguments N, SLO, SHI, NS and FFT must remain unchanged from the previous call to G10BAF with USEFFT = .FALSE..

10: FFT(NS) – REAL (KIND=nag_wp) array

Input/Output

On entry: if USEFFT = .TRUE., FFT must contain the fast Fourier transform of the weights of the discretized data, \(\xi_l \), for \(l = 1, 2, \ldots, n_s \). Otherwise FFT need not be set.

On exit: the fast Fourier transform of the weights of the discretized data, \(\xi_l \), for \(l = 1, 2, \ldots, n_s \).

11: IFAIL – INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL = 0 unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL = 1

On entry, N ≤ 0,
or NS < 2,
or SHI ≤ SLO,
or WINDOW ≤ 0.0.

IFAIL = 2

On entry, G10BAF has been called with USEFFT = .TRUE. but the routine has not been called previously with USEFFT = .FALSE.,
or G10BAF has been called with USEFFT = .TRUE. but some of the arguments N, SLO, SHI, NS have been changed since the previous call to G10BAF with USEFFT = .FALSE..

IFAIL = 3

On entry, at least one prime factor of NS is greater than 19 or NS has more than 20 prime factors.

IFAIL = 4

On entry, the interval given by SLO to SHI does not extend beyond three window widths at either extreme of the dataset. This may distort the density estimate in some cases.

7 Accuracy

See Jones and Lotwick (1984) for a discussion of the accuracy of this method.
8 Further Comments

The time for computing the weights of the discretized data is of order n, while the time for computing the FFT is of order $n_s \log(n_s)$, as is the time for computing the inverse of the FFT.

9 Example

A sample of 1000 standard Normal (0,1) variates are generated using G05SKF and the density estimated on 100 points with a window width of 0.1. The resulting estimate of the density function is plotted using G01AGF.

9.1 Program Text

Program g10bafe

! G10BAF Example Program Text
!
! Mark 24 Release. NAG Copyright 2012.
!
! .. Use Statements ..
Use nag_library, Only: g01agf, g10baf, nag_wp
!
! .. Implicit None Statement ..
Implicit None
!
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
!
! .. Local Scalars ..
Real (Kind=nag_wp) :: shi, slo, window
Integer :: ifail, n, ns, nstepx, nstepy
Logical :: usefft
!
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fft(:), smooth(:), t(:), x(:)
Integer, Allocatable :: isort(:)
!
! .. Executable Statements ..
Write (nout,*) 'G10BAF Example Program Results'
Write (nout,*)
Flush (nout)
!
! Skip heading in data file
Read (nin,*)
!
! Read in density estimation information
Read (nin,*) window, slo, shi, ns
!
! Read in plotting information
Read (nin,*) nstepx, nstepy
!
! Read in the size of the dataset
Read (nin,*) n
Allocate (smooth(ns),t(ns),fft(ns),x(n),isort(ns))
!
! Read in data
Read (nin,*) x(1:n)
!
! Perform kernel density estimation
usefft = .False.
ifail = 0
Call g10baf(n,x,window,slo,shi,ns,smooth,t,usefft,fft,ifail)
!
! Display smoothed data
ifail = 0
Call g01agf(t,smooth,ns,isort,nstepx,nstepy,ifail)

End Program g10bafe
9.2 Program Data

G10BAF Example Program Data

0.1 -4.0 4.0 100 :: WINDOW,SLO,SHI,NS
40 20 :: NSTEPX,NSTEPY
100 :: N

0.114 -0.232 -0.570 1.853 -0.994
-0.374 -1.028 0.509 0.881 -0.453
 0.588 -0.625 -1.622 -0.567 0.421
-0.475 0.054 0.817 1.015 0.608
-1.353 -0.912 -1.136 1.067 0.121
-0.075 -0.374 1.217 -1.058 -0.894
 1.026 -0.967 -1.065 0.513 0.969
 0.582 -0.985 0.097 0.416 -0.514
 0.898 -0.154 0.617 -0.436 -1.212
-1.571 0.210 -1.101 1.018 -1.702
-2.230 -0.648 -0.350 0.446 -2.667
 0.094 -0.380 -2.852 -0.888 -1.481
-0.359 -0.554 1.531 0.052 -1.715
 1.255 -0.540 0.362 -0.654 -0.272
-1.810 0.269 -1.918 0.001 1.240
-0.368 -0.647 -2.282 0.498 0.001
-3.059 -1.171 0.566 0.948 0.925
 0.825 0.130 0.930 0.523 0.443
-0.649 0.554 -2.823 0.158 -1.180
 0.610 0.877 0.791 -0.078 1.412 :: End of X

9.3 Program Results

G10BAF Example Program Results

.+....+....+....+....+....+....+.
 0.800+ + + +

 0.600+ + + +
 . . 1 .

 . . 1 1 .
 . 21 .11 .
 0.400+ 1 1 1 1 +
 . 1 . 1 .
 . 11 1 . .
 . 1111 . .
 . 1 1 . .
 0.200+ 2 1+1 1 +
 . 11 1 1 2 .
 . 1 111 . 1 .
 . 111 2 1 2 . 2 .
 . 12 1112 . 221 .
 0.000+13231+.11.+....+....+....+.113232323231+
 .+....+....+....+....+....+....+.
 -4.000 -2.000 0.000 2.000 4.000
 -3.000 -1.000 1.000 3.000