NAG Library Routine Document
 G03DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G03DAF computes a test statistic for the equality of within-group covariance matrices and also computes matrices for use in discriminant analysis.

2 Specification

```
SUBROUTINE GO3DAF (WEIGHT, N, M, X, LDX, ISX, NVAR, ING, NG, WT, NIG, GMN,
    LDGMN, DET, GC, STAT, DF, SIG, WK, IWK, IFAIL)
INTEGER N, M, LDX, ISX(M), NVAR, ING(N), NG, NIG(NG), LDGMN, &
    IWK(NG), IFAIL
REAL (KIND=nag_wp) X(LDX,M), WT(*), GMN(LDGMN,NVAR), DET(NG),
    GC((NG+1)*NVAR*(NVAR+1)/2), STAT, DF, SIG,
    WK(N* (NVAR+1))
CHARACTER(1)
    WEIGHT
```


3 Description

Let a sample of n observations on p variables come from n_{g} groups with n_{j} observations in the j th group and $\sum n_{j}=n$. If the data is assumed to follow a multivariate Normal distribution with the variancecovariance matrix of the j th group Σ_{j}, then to test for equality of the variance-covariance matrices between groups, that is, $\Sigma_{1}=\Sigma_{2}=\cdots=\Sigma_{n_{g}}=\Sigma$, the following likelihood-ratio test statistic, G, can be used;

$$
G=C\left\{\left(n-n_{g}\right) \log |S|-\sum_{j=1}^{n_{g}}\left(n_{j}-1\right) \log \left|S_{j}\right|\right\}
$$

where

$$
C=1-\frac{2 p^{2}+3 p-1}{6(p+1)\left(n_{g}-1\right)}\left(\sum_{j=1}^{n_{g}} \frac{1}{\left(n_{j}-1\right)}-\frac{1}{\left(n-n_{g}\right)}\right)
$$

and S_{j} are the within-group variance-covariance matrices and S is the pooled variance-covariance matrix given by

$$
S=\frac{\sum_{j=1}^{n_{g}}\left(n_{j}-1\right) S_{j}}{\left(n-n_{g}\right)}
$$

For large n, G is approximately distributed as a χ^{2} variable with $\frac{1}{2} p(p+1)\left(n_{g}-1\right)$ degrees of freedom, see Morrison (1967) for further comments. If weights are used, then S and S_{j} are the weighted pooled and within-group variance-covariance matrices and n is the effective number of observations, that is, the sum of the weights.
Instead of calculating the within-group variance-covariance matrices and then computing their determinants in order to calculate the test statistic, G03DAF uses a $Q R$ decomposition. The group means are subtracted from the data and then for each group, a $Q R$ decomposition is computed to give an upper triangular matrix R_{j}^{*}. This matrix can be scaled to give a matrix R_{j} such that $S_{j}=R_{j}^{\mathrm{T}} R_{j}$. The pooled R matrix is then computed from the R_{j} matrices. The values of $|S|$ and the $\left|S_{j}\right|$ can then be calculated from the diagonal elements of R and the R_{j}.

This approach means that the Mahalanobis squared distances for a vector observation x can be computed as $z^{\mathrm{T}} z$, where $R_{j} z=\left(x-\bar{x}_{j}\right), \bar{x}_{j}$ being the vector of means of the j th group. These distances can be calculated by G03DBF. The distances are used in discriminant analysis and G03DCF uses the results of G03DAF to perform several different types of discriminant analysis. The differences between the discriminant methods are, in part, due to whether or not the within-group variance-covariance matrices are equal.

4 References

Aitchison J and Dunsmore I R (1975) Statistical Prediction Analysis Cambridge
Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) (3rd Edition) Griffin
Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press
Morrison D F (1967) Multivariate Statistical Methods McGraw-Hill

5 Parameters

1: WEIGHT - CHARACTER(1)
Input
On entry: indicates if weights are to be used.
WEIGHT = 'U'
No weights are used.
WEIGHT $=$ ' W '
Weights are to be used and must be supplied in WT.
Constraint: WEIGHT = 'U' or 'W'.
2: N - INTEGER Input
On entry: n, the number of observations.
Constraint: $\mathrm{N} \geq 1$.
3: M - INTEGER Input
On entry: the number of variables in the data array X .
Constraint: $\mathrm{M} \geq$ NVAR.
4: $\mathrm{X}(\mathrm{LDX}, \mathrm{M})-$ REAL (KIND=nag_wp) array Input
On entry: $\mathrm{X}(k, l)$ must contain the k th observation for the l th variable, for $k=1,2, \ldots, n$ and $l=1,2, \ldots, \mathrm{M}$.

5: LDX - INTEGER
Input
On entry: the first dimension of the array X as declared in the (sub)program from which G03DAF is called.

Constraint: $\mathrm{LDX} \geq \mathrm{N}$.
6: $\quad \operatorname{ISX}(\mathrm{M})-$ INTEGER array
Input
On entry: $\operatorname{ISX}(l)$ indicates whether or not the l th variable in X is to be included in the variancecovariance matrices.

If $\operatorname{ISX}(l)>0$ the l th variable is included, for $l=1,2, \ldots, \mathrm{M}$; otherwise it is not referenced.
Constraint: $\operatorname{ISX}(l)>0$ for NVAR values of l.

7: NVAR - INTEGER
Input
On entry: p, the number of variables in the variance-covariance matrices.
Constraint: NVAR ≥ 1.
8: $\quad \operatorname{ING}(\mathrm{N})-$ INTEGER array
Input
On entry: $\operatorname{ING}(k)$ indicates to which group the k th observation belongs, for $k=1,2, \ldots, n$.
Constraint: $1 \leq \operatorname{ING}(k) \leq \mathrm{NG}$, for $k=1,2, \ldots, n$
The values of ING must be such that each group has at least NVAR members.
9: \quad NG - INTEGER
Input
On entry: the number of groups, n_{g}.
Constraint: $\mathrm{NG} \geq 2$.
10: $\quad \mathrm{WT}(*)-$ REAL (KIND=nag_wp) array
Input
Note: the dimension of the array WT must be at least N if $\mathrm{WEIGHT}=$ ' W ', and at least 1 otherwise.
On entry: if WEIGHT $=$ ' W ' the first n elements of WT must contain the weights to be used in the analysis and the effective number of observations for a group is the sum of the weights of the observations in that group. If $\mathrm{WT}(k)=0.0$ the k th observation is excluded from the calculations.

If WEIGHT = 'U', WT is not referenced and the effective number of observations for a group is the number of observations in that group.
Constraint: if WEIGHT $=$ ' W ', WT $(k) \geq 0.0$, for $k=1,2, \ldots, n$.
11: $\operatorname{NIG}(\mathrm{NG})$ - INTEGER array
Output
On exit: $\operatorname{NIG}(j)$ contains the number of observations in the j th group, for $j=1,2, \ldots, n_{g}$.
12: \quad GMN (LDGMN,NVAR) - REAL (KIND=nag_wp) array
Output
On exit: the j th row of GMN contains the means of the p selected variables for the j th group, for $j=1,2, \ldots, n_{g}$.

13: LDGMN - INTEGER
Input
On entry: the first dimension of the array GMN as declared in the (sub)program from which G03DAF is called.

Constraint: LDGMN \geq NG.
14: $\operatorname{DET}(\mathrm{NG})$ - REAL (KIND=nag_wp) array
Output
On exit: the logarithm of the determinants of the within-group variance-covariance matrices.
15: $\quad \mathrm{GC}((\mathrm{NG}+1) \times \mathrm{NVAR} \times(\mathrm{NVAR}+1) / 2)-$ REAL $(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: the first $p(p+1) / 2$ elements of GC contain R and the remaining n_{g} blocks of $p(p+1) / 2$ elements contain the R_{j} matrices. All are stored in packed form by columns.

16: \quad STAT - REAL (KIND=nag_wp)
Output
On exit: the likelihood-ratio test statistic, G.
17: $\quad \mathrm{DF}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp)
Output
On exit: the degrees of freedom for the distribution of G.

18: \quad SIG - REAL (KIND=nag_wp)
On exit: the significance level for G.
19: $\quad \mathrm{WK}(\mathrm{N} \times(\mathrm{NVAR}+1))-$ REAL (KIND=$=$ nag_wp $)$ array
Workspace
20: $\quad \operatorname{IWK}(\mathrm{NG})-$ INTEGER array
Workspace

21: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, NVAR <1,
or $\quad \mathrm{N}<1$,
or $\quad \mathrm{NG}<2$,
or $\quad \mathrm{M}<\mathrm{NVAR}$,
or $\quad \mathrm{LDX}<\mathrm{N}$,
or \quad LDGMN $<$ NG,
or \quad WEIGHT \neq 'U' or 'W'.
IFAIL $=2$
On entry, WEIGHT $=$ ' W ' and a value of $\mathrm{WT}<0.0$.
IFAIL $=3$
On entry, there are not exactly NVAR elements of ISX >0,
or a value of ING is not in the range 1 to NG ,
or the effective number of observations for a group is less than 1,
or a group has less than NVAR members.
IFAIL $=4$
R or one of the R_{j} is not of full rank.

7 Accuracy

The accuracy is dependent on the accuracy of the computation of the $Q R$ decomposition. See F08AEF (DGEQRF) for further details.

8 Further Comments

The time taken will be approximately proportional to $n p^{2}$.

9 Example

The data, taken from Aitchison and Dunsmore (1975), is concerned with the diagnosis of three 'types' of Cushing's syndrome. The variables are the logarithms of the urinary excretion rates ($\mathrm{mg} / 24 \mathrm{hr}$) of two steroid metabolites. Observations for a total of 21 patients are input and the statistics computed by G03DAF. The printed results show that there is evidence that the within-group variance-covariance matrices are not equal.

9.1 Program Text

Program g03dafe
! GO3DAF Example Program Text
! Mark 24 Release. NAG Copyright 2012.
! .. Use Statements ..
Use nag_library, Only: g03daf, nag_wp, x04caf
.. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter : \quad nin $=5$, nout $=6$
! .. Local Scalars ..
Real (Kind=nag_wp) : : df, sig, stat
Integer : : i, ifail, ldgmn, ldx, lgc, lwk, lwt, \&
m, n, ng, nvar
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable : : det(:), gc(:), gmn(:,:), wk(:), \& wt(:), x(:,:)
Integer, Allocatable : ing(:), isx(:), iwk(:), nig(:)
! .. Intrinsic Procedures ..
Intrinsic : : count
! .. Executable Statements ..
Write (nout,*) 'GO3DAF Example Program Results'
Write (nout,*)
Flush (nout)
! Skip headings in data file
Read (nin,*)
! Read in the problem size
Read (nin,*) n, m, ng, weight
If (weight=='W' .Or. weight=='w') Then

$$
\text { lwt }=\mathrm{n}
$$

Else
lwt $=0$
End If
$1 d x=n$
Allocate ($x(l d x, m)$,ing(n), wt (lwt), isx $(m))$
! Read in data
If (lwt>0) Then
Read (nin,*) (x (i, 1:m), ing(i),wt(i),i=1,n)
Else
Read (nin,*) (x (i, 1:m), ing(i), i=1,n)
End If
! Read in variable inclusion flags
Read (nin,*) isx(1:m)
! Calculate NVAR
nvar $=$ count(isx(1:m)==1)
ldgmn $=n g$
$\operatorname{lgc}=(n g+1) *$ nvar* $(n v a r+1) / 2$
lwk $=n *(n v a r+1)$
Allocate (nig(ng), gmn(ldgmn, nvar), $\operatorname{det}(n g), g c(l g c), w k(l w k), i w k(n g))$

```
! Compute test statistic
    ifail = 0
    Call g03daf(weight,n,m,x,ldx,isx,nvar,ing,ng,wt,nig,gmn,ldgmn,det,gc, &
        stat,df,sig,wk,iwk,ifail)
! Display results
    ifail = 0
    Call x04caf('General',' ',ng,nvar,gmn,ldgmn,'Group means',ifail)
    Write (nout,*)
    Write (nout,*) ' LOG of determinants'
    Write (nout,*)
    Write (nout,99999) det(1:ng)
    Write (nout,*)
    Write (nout,99998) ' STAT = ', stat
    Write (nout,99998) ' DF = ', df
    Write (nout,99998) , SIG = ', sig
99999 Format (1X,3F10.4)
99998 Format (1X,A,F7.4)
    End Program g03dafe
```


9.2 Program Data

9.3 Program Results

```
GO3DAF Example Program Results
```

Group means

	1	2
1	1.0433	-0.6034
2	2.0073	-0.2060
3	2.7097	1.5998

LOG of determinants
$-0.8273-3.0460 \quad-2.2877$
$\mathrm{STAT}=19.2410$
$\mathrm{DF}=6.0000$
SIG $=0.0038$

